The signature of a path provides a top down description of the path in terms of its effects as a control [*Differential Equations Driven by Rough Paths* (2007) Springer]. The signature transforms a path into a group-like element in the tensor algebra and is an essential object in rough path theory. The expected signature of a stochastic process plays a similar role to that played by the characteristic function of a random variable. In [Chevyrev (2013)], it is proved that under certain boundedness conditions, the expected value of a random signature already determines the law of this random signature. It becomes of great interest to be able to compute examples of expected signatures and obtain the upper bounds for the decay rates of expected signatures. For instance, the computation for Brownian motion on $[0,1]$ leads to the “cubature on Wiener space” methodology [Lyons and Victoir, *Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.* **460** (2004) 169–198]. In this paper we fix a bounded domain $\Gamma$ in a Euclidean space $E$ and study the expected signature of a Brownian path starting at $z\in\Gamma$ and stopped at the first exit time from $\Gamma$. We denote this tensor series valued function by $\Phi_{\Gamma}(z)$ and focus on the case $E=\mathbb{R}^{d}$. We show that $\Phi_{\Gamma}(z)$ satisfies an elliptic PDE system and a boundary condition. The equations determining $\Phi_{\Gamma}$ can be recursively solved; by an iterative application of Sobolev estimates we are able, under certain smoothness and boundedness condition of the domain $\Gamma$, to prove geometric bounds for the terms in $\Phi_{\Gamma}(z)$. However, there is still a gap and we have not shown that $\Phi_{\Gamma}(z)$ determines the law of the signature of this stopped Brownian motion even if $\Gamma$ is a unit ball.

## References

*Ann. Probab.*

**16**910–913. MR929086 0645.60018 10.1214/aop/1176991795 euclid.aop/1176991795 [1] Berg, C. (1988). The cube of a normal distribution is indeterminate.

*Ann. Probab.*

**16**910–913. MR929086 0645.60018 10.1214/aop/1176991795 euclid.aop/1176991795

*Séminaire de Probabilités XLI. Lecture Notes in Math.*

**1934**421–438. Springer, Berlin. MR2483743 1156.60027 10.1007/978-3-540-77913-1_20[5] Friz, P. and Victoir, N. (2008). The Burkholder–Davis–Gundy inequality for enhanced martingales. In

*Séminaire de Probabilités XLI. Lecture Notes in Math.*

**1934**421–438. Springer, Berlin. MR2483743 1156.60027 10.1007/978-3-540-77913-1_20

*Multidimensional Stochastic Processes as Rough Paths*:

*Theory and Applications. Cambridge Studies in Advanced Mathematics*

**120**. Cambridge Univ. Press, Cambridge. MR2604669 1193.60053[6] Friz, P. K. and Victoir, N. B. (2010).

*Multidimensional Stochastic Processes as Rough Paths*:

*Theory and Applications. Cambridge Studies in Advanced Mathematics*

**120**. Cambridge Univ. Press, Cambridge. MR2604669 1193.60053

*Stochastics Stochastics Rep.*

**49**169–179. MR1785003 0827.60038 10.1080/17442509408833918[7] Gaines, J. G. (1994). The algebra of iterated stochastic integrals.

*Stochastics Stochastics Rep.*

**49**169–179. MR1785003 0827.60038 10.1080/17442509408833918

*Bulletin de L’Académie des Sciences de L’URSS. Classe des Sciences Mathématiques et na*

**6**749–754.[8] Gerschgorin, S. (1931). Über die Abgrenzung der Eigenwerte einer Matrix.

*Bulletin de L’Académie des Sciences de L’URSS. Classe des Sciences Mathématiques et na*

**6**749–754.

*Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.*

**460**169–198. MR2052260 1055.60049 10.1098/rspa.2003.1239[11] Lyons, T. and Victoir, N. (2004). Cubature on Wiener space.

*Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.*

**460**169–198. MR2052260 1055.60049 10.1098/rspa.2003.1239

*Differential Equations Driven by Rough Paths. Lecture Notes in Math.*

**1908**. Springer, Berlin. MR2314753 1107.60053[12] Lyons, T. J., Caruana, M. and Lévy, T. (2007).

*Differential Equations Driven by Rough Paths. Lecture Notes in Math.*

**1908**. Springer, Berlin. MR2314753 1107.60053