Abstract
Via a Dirichlet form extension theorem and making full use of two-sided heat kernel estimates, we establish quenched invariance principles for random walks in random environments with a boundary. In particular, we prove that the random walk on a supercritical percolation cluster or among random conductances bounded uniformly from below in a half-space, quarter-space, etc., converges when rescaled diffusively to a reflecting Brownian motion, which has been one of the important open problems in this area. We establish a similar result for the random conductance model in a box, which allows us to improve existing asymptotic estimates for the relevant mixing time. Furthermore, in the uniformly elliptic case, we present quenched invariance principles for domains with more general boundaries.
Citation
Zhen-Qing Chen. David A. Croydon. Takashi Kumagai. "Quenched invariance principles for random walks and elliptic diffusions in random media with boundary." Ann. Probab. 43 (4) 1594 - 1642, July 2015. https://doi.org/10.1214/14-AOP914
Information