Translator Disclaimer
May 2013 Patterns in Sinai’s walk
Dimitris Cheliotis, Bálint Virág
Ann. Probab. 41(3B): 1900-1937 (May 2013). DOI: 10.1214/11-AOP724

Abstract

Sinai’s random walk in random environment shows interesting patterns on the exponential time scale. We characterize the patterns that appear on infinitely many time scales after appropriate rescaling (a functional law of iterated logarithm). The curious rate function captures the difference between one-sided and two-sided behavior.

Citation

Download Citation

Dimitris Cheliotis. Bálint Virág. "Patterns in Sinai’s walk." Ann. Probab. 41 (3B) 1900 - 1937, May 2013. https://doi.org/10.1214/11-AOP724

Information

Published: May 2013
First available in Project Euclid: 15 May 2013

zbMATH: 1300.60116
MathSciNet: MR3098062
Digital Object Identifier: 10.1214/11-AOP724

Subjects:
Primary: 60F10, 60F17, 60K37

Rights: Copyright © 2013 Institute of Mathematical Statistics

JOURNAL ARTICLE
38 PAGES


SHARE
Vol.41 • No. 3B • May 2013
Back to Top