Abstract
Let $\{X_n\}$ be a stationary Gaussian sequence with $EX_0 = 0, EX_0^2 = 1$ and $EX_0X_n = r(n)$. Let $c_n = (2 \ln n)^\frac{1}{2}$ and set $M_n = \max_{0\leqq k \leqq n} X_k$. It is presently known that if $r(n) \ln n = O(1)$, \begin{equation*}\tag{1}\lim \inf\frac{2c_n(M_n - c_n)}{\ln \ln n} = -1 \quad \text{and}\quad \lim \sup\frac{2c_n(M_n - c_n)}{\ln \ln n} = 1\end{equation*} with probability 1. Related results are obtained here assuming $r(n) = o(1)$ and $(r(n) \ln n)^{-1}$ is monotone for large $n$ and $o(1)$. Subject to some regularity in $r(n)$, it is shown that if $r(n) \ln n/(\ln \ln n)^2 = o(1)$, then a.s. \begin{equation*}\tag{2}\lim \inf\frac{2c_n(M_n - (1 - r(n))^{\frac{1}{2}}c_n - Z_n)}{\ln \ln n} = -1 \quad \text{and}\end{equation*} $$\lim \sup\frac{2c_n(M_n - (1 - r(n))^{\frac{1}{2}}c_n - Z_n)}{\ln \ln n} = 1$$ where $Z_n$ is the minimum variance estimate of the mean based on $X_0,\cdots, X_n$. Futhermore if $(\ln \ln n)^2/r(n) \ln n = o(1)$, then a.s. \begin{equation*}\tag{3}\lim_{n\rightarrow\infty} r^{-\frac{1}{2}}(n)(M_n - (1 - r(n))^{\frac{1}{2}}c_n - Z_n) = 0.\end{equation*} It is pointed out that (2) and (3) contain laws for $M_n$ which more closely resemble the one given here in (1). Corresponding results for continuous parameter Gaussian processes are sketched.
Citation
Yash Mittal. Donald Ylvisaker. "Strong Laws for the Maxima of Stationary Gaussian Processes." Ann. Probab. 4 (3) 357 - 371, June, 1976. https://doi.org/10.1214/aop/1176996085
Information