Open Access
June, 1976 Strong Laws for the Maxima of Stationary Gaussian Processes
Yash Mittal, Donald Ylvisaker
Ann. Probab. 4(3): 357-371 (June, 1976). DOI: 10.1214/aop/1176996085

Abstract

Let $\{X_n\}$ be a stationary Gaussian sequence with $EX_0 = 0, EX_0^2 = 1$ and $EX_0X_n = r(n)$. Let $c_n = (2 \ln n)^\frac{1}{2}$ and set $M_n = \max_{0\leqq k \leqq n} X_k$. It is presently known that if $r(n) \ln n = O(1)$, \begin{equation*}\tag{1}\lim \inf\frac{2c_n(M_n - c_n)}{\ln \ln n} = -1 \quad \text{and}\quad \lim \sup\frac{2c_n(M_n - c_n)}{\ln \ln n} = 1\end{equation*} with probability 1. Related results are obtained here assuming $r(n) = o(1)$ and $(r(n) \ln n)^{-1}$ is monotone for large $n$ and $o(1)$. Subject to some regularity in $r(n)$, it is shown that if $r(n) \ln n/(\ln \ln n)^2 = o(1)$, then a.s. \begin{equation*}\tag{2}\lim \inf\frac{2c_n(M_n - (1 - r(n))^{\frac{1}{2}}c_n - Z_n)}{\ln \ln n} = -1 \quad \text{and}\end{equation*} $$\lim \sup\frac{2c_n(M_n - (1 - r(n))^{\frac{1}{2}}c_n - Z_n)}{\ln \ln n} = 1$$ where $Z_n$ is the minimum variance estimate of the mean based on $X_0,\cdots, X_n$. Futhermore if $(\ln \ln n)^2/r(n) \ln n = o(1)$, then a.s. \begin{equation*}\tag{3}\lim_{n\rightarrow\infty} r^{-\frac{1}{2}}(n)(M_n - (1 - r(n))^{\frac{1}{2}}c_n - Z_n) = 0.\end{equation*} It is pointed out that (2) and (3) contain laws for $M_n$ which more closely resemble the one given here in (1). Corresponding results for continuous parameter Gaussian processes are sketched.

Citation

Download Citation

Yash Mittal. Donald Ylvisaker. "Strong Laws for the Maxima of Stationary Gaussian Processes." Ann. Probab. 4 (3) 357 - 371, June, 1976. https://doi.org/10.1214/aop/1176996085

Information

Published: June, 1976
First available in Project Euclid: 19 April 2007

zbMATH: 0341.60024
MathSciNet: MR405564
Digital Object Identifier: 10.1214/aop/1176996085

Subjects:
Primary: 60G10
Secondary: 60F15 , 60G15

Keywords: Maxima , Stationary Gaussian processes , stationary Gaussian sequences , strong laws

Rights: Copyright © 1976 Institute of Mathematical Statistics

Vol.4 • No. 3 • June, 1976
Back to Top