Abstract
Fix ν>0, denote by G(ν/2) a Gamma random variable with parameter ν/2 and let n≥2 be a fixed even integer. Consider a sequence {Fk}k≥1 of square integrable random variables belonging to the nth Wiener chaos of a given Gaussian process and with variance converging to 2ν. As k→∞, we prove that Fk converges in distribution to 2G(ν/2)−ν if and only if E(Fk4)−12E(Fk3)→12ν2−48ν.
Citation
Ivan Nourdin. Giovanni Peccati. "Noncentral convergence of multiple integrals." Ann. Probab. 37 (4) 1412 - 1426, July 2009. https://doi.org/10.1214/08-AOP435
Information