Open Access
January 2008 Law of the iterated logarithm for stationary processes
Ou Zhao, Michael Woodroofe
Ann. Probab. 36(1): 127-142 (January 2008). DOI: 10.1214/009117907000000079
Abstract

There has been recent interest in the conditional central limit question for (strictly) stationary, ergodic processes …, X−1, X0, X1, … whose partial sums Sn=X1+⋯+Xn are of the form Sn=Mn+Rn, where Mn is a square integrable martingale with stationary increments and Rn is a remainder term for which E(Rn2)=o(n). Here we explore the law of the iterated logarithm (LIL) for the same class of processes. Letting ‖⋅‖ denote the norm in L2(P), a sufficient condition for the partial sums of a stationary process to have the form Sn=Mn+Rn is that n−3/2E(Sn|X0, X−1, …)‖ be summable. A sufficient condition for the LIL is only slightly stronger, requiring n−3/2log3/2(n)‖E(Sn|X0, X−1, …)‖ to be summable. As a by-product of our main result, we obtain an improved statement of the conditional central limit theorem. Invariance principles are obtained as well.

References

1.

Arcones, M. A. (1999). The law of the iterated logarithm over a stationary Gaussian sequence of random vectors. J. Theoret. Probab. 12 615–641.  MR1702915 0941.60041 10.1023/A:1021667529846 Arcones, M. A. (1999). The law of the iterated logarithm over a stationary Gaussian sequence of random vectors. J. Theoret. Probab. 12 615–641.  MR1702915 0941.60041 10.1023/A:1021667529846

2.

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.  MR0233396 0172.21201 Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.  MR0233396 0172.21201

3.

Bingham, N. H., Goldie, C. M. and Tuegels, J. L. (1987). Regular Variation. Cambridge Univ. Press.  MR0898871 Bingham, N. H., Goldie, C. M. and Tuegels, J. L. (1987). Regular Variation. Cambridge Univ. Press.  MR0898871

4.

Derriennic, Y. and Lin, M. (2001). Fractional Poisson equation and ergodic theorems for fractional coboundaries. Israel J. Math. 123 93–130.  MR1835290 0988.47009 10.1007/BF02784121 Derriennic, Y. and Lin, M. (2001). Fractional Poisson equation and ergodic theorems for fractional coboundaries. Israel J. Math. 123 93–130.  MR1835290 0988.47009 10.1007/BF02784121

5.

Durrett, R. and Resnick, S. (1978). Functional limit theorems for dependent variables. Ann. Probab. 6 829–846.  MR0503954 0398.60024 10.1214/aop/1176995431 euclid.aop/1176995431 Durrett, R. and Resnick, S. (1978). Functional limit theorems for dependent variables. Ann. Probab. 6 829–846.  MR0503954 0398.60024 10.1214/aop/1176995431 euclid.aop/1176995431

6.

Hartman, P. and Wintner, A. (1941). On the law of the iterated logarithm. Amer. J. Math. 63 169–176.  MR0003497 67.0460.03 10.2307/2371287 Hartman, P. and Wintner, A. (1941). On the law of the iterated logarithm. Amer. J. Math. 63 169–176.  MR0003497 67.0460.03 10.2307/2371287

7.

Heyde, C. C. and Scott, D. J. (1973). Invariance principles for the law of the iterated logarithm for martingales and processes with stationary increments. Ann. Probab. 1 428–436.  MR0353403 0259.60021 10.1214/aop/1176996937 euclid.aop/1176996937 Heyde, C. C. and Scott, D. J. (1973). Invariance principles for the law of the iterated logarithm for martingales and processes with stationary increments. Ann. Probab. 1 428–436.  MR0353403 0259.60021 10.1214/aop/1176996937 euclid.aop/1176996937

8.

Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1–19.  MR0834478 0588.60058 10.1007/BF01210789 euclid.cmp/1104114929 Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1–19.  MR0834478 0588.60058 10.1007/BF01210789 euclid.cmp/1104114929

9.

Krengel, U. (1985). Ergodic Theorems. de Gruyter, Berlin.  MR0797411 Krengel, U. (1985). Ergodic Theorems. de Gruyter, Berlin.  MR0797411

10.

Lai, T. L. and Stout, W. F. (1980). Limit theorems for sums of dependent random variables. Z. Wahrsch. Verw. Gebiete 51 1–14.  MR0566103 0419.60026 10.1007/BF00533812 Lai, T. L. and Stout, W. F. (1980). Limit theorems for sums of dependent random variables. Z. Wahrsch. Verw. Gebiete 51 1–14.  MR0566103 0419.60026 10.1007/BF00533812

11.

Maxwell, M. and Woodroofe, M. (2000). Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 713–724.  MR1782272 1044.60014 10.1214/aop/1019160258 euclid.aop/1019160258 Maxwell, M. and Woodroofe, M. (2000). Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 713–724.  MR1782272 1044.60014 10.1214/aop/1019160258 euclid.aop/1019160258

12.

Merlevède, F., Peligrad, M. and Utev, S. (2006). Recent advances in invariance principles for stationary sequences. Probab. Surv. 3 1–36.  MR2206313 10.1214/154957806100000202 Merlevède, F., Peligrad, M. and Utev, S. (2006). Recent advances in invariance principles for stationary sequences. Probab. Surv. 3 1–36.  MR2206313 10.1214/154957806100000202

13.

Peligrad, M. and Utev, S. (2005). A new maximal inequality and invariance principle for stationary sequences. Ann. Probab. 33 798–815.  MR2123210 1070.60025 10.1214/009117904000001035 euclid.aop/1109868600 Peligrad, M. and Utev, S. (2005). A new maximal inequality and invariance principle for stationary sequences. Ann. Probab. 33 798–815.  MR2123210 1070.60025 10.1214/009117904000001035 euclid.aop/1109868600

14.

Petersen, K. (1983). Ergodic Theory. Cambridge Univ. Press.  MR0833286 0507.28010 Petersen, K. (1983). Ergodic Theory. Cambridge Univ. Press.  MR0833286 0507.28010

15.

Rio, E. (1995). The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann. Probab. 23 1188–1203.  MR1349167 0833.60024 10.1214/aop/1176988179 euclid.aop/1176988179 Rio, E. (1995). The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann. Probab. 23 1188–1203.  MR1349167 0833.60024 10.1214/aop/1176988179 euclid.aop/1176988179

16.

Shao, Q. M. (1993). Almost sure invariance principles for mixing sequences of random variables. Stochastic Process. Appl. 48 319–334.  MR1244549 0793.60038 10.1016/0304-4149(93)90051-5 Shao, Q. M. (1993). Almost sure invariance principles for mixing sequences of random variables. Stochastic Process. Appl. 48 319–334.  MR1244549 0793.60038 10.1016/0304-4149(93)90051-5

17.

Stout, W. F. (1970). The Hartman–Wintner law of the iterated logarithm for martingales. Ann. Math. Statist. 41 2158–2160.  0235.60046 10.1214/aoms/1177696721 euclid.aoms/1177696721 Stout, W. F. (1970). The Hartman–Wintner law of the iterated logarithm for martingales. Ann. Math. Statist. 41 2158–2160.  0235.60046 10.1214/aoms/1177696721 euclid.aoms/1177696721

18.

Yokoyama, R. (1995). On the central limit theorem and law of the iterated logarithm for stationary processes with applications to linear processes. Stochastic Process. Appl. 59 343–351.  MR1357660 0834.60026 10.1016/0304-4149(95)00038-9 Yokoyama, R. (1995). On the central limit theorem and law of the iterated logarithm for stationary processes with applications to linear processes. Stochastic Process. Appl. 59 343–351.  MR1357660 0834.60026 10.1016/0304-4149(95)00038-9

19.

Zygmund, A. (2002). Trigonometric Series. Paperback with a foreword by Robert A. Fefferman. Cambridge Univ. Press.  MR1963498 Zygmund, A. (2002). Trigonometric Series. Paperback with a foreword by Robert A. Fefferman. Cambridge Univ. Press.  MR1963498
Copyright © 2008 Institute of Mathematical Statistics
Ou Zhao and Michael Woodroofe "Law of the iterated logarithm for stationary processes," The Annals of Probability 36(1), 127-142, (January 2008). https://doi.org/10.1214/009117907000000079
Published: January 2008
Vol.36 • No. 1 • January 2008
Back to Top