Open Access
April 1999 Crossing Estimates and Convergence of Dirichlet Functions Along Random Walk and Diffusion Paths
Alano Ancona, Russell Lyons, Yuval Peres
Ann. Probab. 27(2): 970-989 (April 1999). DOI: 10.1214/aop/1022677392

Abstract

Let ${X _n}$ be a transient reversible Markov chain and let $f$ be a function on the state space with finite Dirichlet energy. We prove crossing inequalities for the process ${f (X _n)}_{n\geq 1}$ and show that it converges almost surely and in $L^2$. Analogous results are also established for reversible diffusions on Riemannian manifolds.

Citation

Download Citation

Alano Ancona. Russell Lyons. Yuval Peres. "Crossing Estimates and Convergence of Dirichlet Functions Along Random Walk and Diffusion Paths." Ann. Probab. 27 (2) 970 - 989, April 1999. https://doi.org/10.1214/aop/1022677392

Information

Published: April 1999
First available in Project Euclid: 29 May 2002

zbMATH: 0945.60063
MathSciNet: MR1698991
Digital Object Identifier: 10.1214/aop/1022677392

Subjects:
Primary: 60J45
Secondary: 31C25 , 60F15

Keywords: Almost sure convergence , crossing , Diffusions , Dirichlet energy , Manifolds , Markov chain , Random walk

Rights: Copyright © 1999 Institute of Mathematical Statistics

Vol.27 • No. 2 • April 1999
Back to Top