Open Access
October 1996 A central limit theorem for reversible exclusion and zero-range particle systems
Sunder Sethuraman, Lin Xu
Ann. Probab. 24(4): 1842-1870 (October 1996). DOI: 10.1214/aop/1041903208


We give easily verifiable conditions under which a functional central limit theorem holds for additive functionals of symmetric simple exclusion and symmetric zero-range processes. Also a reversible exclusion model with speed change is considered. Let $\eta (t)$ be the configuration of the process at time t and let $f(\eta)$ be a function on the state space. The question is: For which functions f does $\lambda^{-1/2} \int_0^{\lambda t} f(\eta(s)) ds$ converge to a Brownian motion? A general but often intractable answer is given by Kipnis and Varadhan. In this article we determine what conditions beyond a mean-zero condition on $f(\eta)$ are required for the diffusive limit above. Specifically, we characterize the $H^{-1}$ space in an applicable way.

Our method of proof relies primarily on a sharp estimate on the "spectral gap" of the process and weak regularity properties for the invariant measures.


Download Citation

Sunder Sethuraman. Lin Xu. "A central limit theorem for reversible exclusion and zero-range particle systems." Ann. Probab. 24 (4) 1842 - 1870, October 1996.


Published: October 1996
First available in Project Euclid: 6 January 2003

zbMATH: 0872.60079
MathSciNet: MR1415231
Digital Object Identifier: 10.1214/aop/1041903208

Primary: 60K35
Secondary: 60F05

Keywords: central limit theorem , invariance principle , simple exclusion process , Zero-range process

Rights: Copyright © 1996 Institute of Mathematical Statistics

Vol.24 • No. 4 • October 1996
Back to Top