Open Access
October, 1990 Best Constants in Martingale Version of Rosenthal's Inequality
Pawel Hitczenko
Ann. Probab. 18(4): 1656-1668 (October, 1990). DOI: 10.1214/aop/1176990639

Abstract

The following generalization of Rosenthal's inequality was proved by Burkholder: $A^{-1}_p\{\|s(f)\|_p + \|d^\ast\|_p\} \leq \|f^\ast\|_p \leq B_p\{\|s(f)\|_p + \|d^\ast\|_p\},$ for all martingales $(f_n)$. It is known that $A_p$ grows like $\sqrt{p}$ as $p \rightarrow \infty$. In this paper we prove that the growth rate of $B_p$ as $p \rightarrow \infty$ is $p/\ln p$.

Citation

Download Citation

Pawel Hitczenko. "Best Constants in Martingale Version of Rosenthal's Inequality." Ann. Probab. 18 (4) 1656 - 1668, October, 1990. https://doi.org/10.1214/aop/1176990639

Information

Published: October, 1990
First available in Project Euclid: 19 April 2007

zbMATH: 0725.60018
MathSciNet: MR1071816
Digital Object Identifier: 10.1214/aop/1176990639

Subjects:
Primary: 60E15
Secondary: 60G42

Keywords: good $\lambda$ inequality , martingale , Moment inequalities

Rights: Copyright © 1990 Institute of Mathematical Statistics

Vol.18 • No. 4 • October, 1990
Back to Top