Abstract
Let $L(a,t)$ be the local time of a Wiener process. Our main result says that the process $L(a,t) - L(0,t)$ can be strongly approximated by a process obtained from a Wiener sheet $W(a,t)$ and a local time process $\hat{L}(0,t)$, independent of $W(\cdot,\cdot)$.
Citation
E. Csaki. M. Csorgo. A. Foldes. P. Revesz. "Brownian Local Time Approximated by a Wiener Sheet." Ann. Probab. 17 (2) 516 - 537, April, 1989. https://doi.org/10.1214/aop/1176991413
Information