Open Access
October, 1987 The Radial Part of Brownian Motion on a Manifold: A Semimartingale Property
Wilfrid S. Kendall
Ann. Probab. 15(4): 1491-1500 (October, 1987). DOI: 10.1214/aop/1176991988

Abstract

The usual Ito formula fails to apply for $r(X)$ when $r$ is a distance function and $X$ a Brownian motion on a general manifold, since $r$ fails to be differentiable on the cut-locus. It is shown that the discrepancy between the two sides of Ito's formula forms a monotonic random process (and hence is of locally bounded variation). In particular, $r(X)$ is a semimartingale.

Citation

Download Citation

Wilfrid S. Kendall. "The Radial Part of Brownian Motion on a Manifold: A Semimartingale Property." Ann. Probab. 15 (4) 1491 - 1500, October, 1987. https://doi.org/10.1214/aop/1176991988

Information

Published: October, 1987
First available in Project Euclid: 19 April 2007

zbMATH: 0647.60086
MathSciNet: MR905343
Digital Object Identifier: 10.1214/aop/1176991988

Subjects:
Primary: 60J65
Secondary: 58G32

Keywords: Brownian motion , Comparison theorem , cut-locus , Laplace-Beltrami operator

Rights: Copyright © 1987 Institute of Mathematical Statistics

Vol.15 • No. 4 • October, 1987
Back to Top