Open Access
Translator Disclaimer
April, 1986 Asymptotic Equivalence of Fluctuation Fields for Reversible Exclusion Processes with Speed Change
A. De Masi, E. Presutti, H. Spohn, W. D. Wick
Ann. Probab. 14(2): 409-423 (April, 1986). DOI: 10.1214/aop/1176992524

Abstract

We consider stationary, reversible exclusion processes with speed change and prove that for sufficiently small interaction the fluctuation fields constructed from local functions become proportional to the density fluctuation field when averaged over suitably large space-time regions. If the exclusion process is of gradient type, this result implies that the density fluctuation field converges to an infinite dimensional Ornstein-Uhlenbeck process.

Citation

Download Citation

A. De Masi. E. Presutti. H. Spohn. W. D. Wick. "Asymptotic Equivalence of Fluctuation Fields for Reversible Exclusion Processes with Speed Change." Ann. Probab. 14 (2) 409 - 423, April, 1986. https://doi.org/10.1214/aop/1176992524

Information

Published: April, 1986
First available in Project Euclid: 19 April 2007

zbMATH: 0609.60097
MathSciNet: MR832017
Digital Object Identifier: 10.1214/aop/1176992524

Subjects:
Primary: 60K35
Secondary: 60F05 , 82A05

Keywords: Exclusion processes with speed change , infinite-dimensional Ornstein-Uhlenbeck processes , linearized hydrodynamics

Rights: Copyright © 1986 Institute of Mathematical Statistics

JOURNAL ARTICLE
15 PAGES


SHARE
Vol.14 • No. 2 • April, 1986
Back to Top