Open Access
May, 1982 Local Limit Theorems for Sample Extremes
L. de Haan, S. I. Resnick
Ann. Probab. 10(2): 396-413 (May, 1982). DOI: 10.1214/aop/1176993865

Abstract

A local limit theorem for maxima of i.i.d. random variables is proved. Also it is shown that under the so-called von Mises' conditions the density of the normalized maximum converges to the limit density in $L_p(0 < p \leq \infty)$ provided both the original density and the limit density are in $L_p$. Finally an occupation time result is proved. The methods of proof are different from those used for the corresponding results concerning partial sums.

Citation

Download Citation

L. de Haan. S. I. Resnick. "Local Limit Theorems for Sample Extremes." Ann. Probab. 10 (2) 396 - 413, May, 1982. https://doi.org/10.1214/aop/1176993865

Information

Published: May, 1982
First available in Project Euclid: 19 April 2007

zbMATH: 0485.60017
MathSciNet: MR647512
Digital Object Identifier: 10.1214/aop/1176993865

Subjects:
Primary: 60F05
Secondary: 60F25

Keywords: density convergence , Extreme values , local limit theorem , occupation time , regular variation

Rights: Copyright © 1982 Institute of Mathematical Statistics

Vol.10 • No. 2 • May, 1982
Back to Top