Open Access
August, 1973 A Generalization of Dynkin's Identity and Some Applications
Krishna B. Athreya, Thomas G. Kurtz
Ann. Probab. 1(4): 570-579 (August, 1973). DOI: 10.1214/aop/1176996886


Let $X(t)$ be a right continuous temporally homogeneous Markov process, $T_t$ the corresponding semigroup and $A$ the weak infinitesimal generator. Let $g(t)$ be absolutely continuous and $\tau$ a stopping time satisfying $$E_x(\int^\tau_0 |g(t)| dt) < \infty \text{and} E_x(\int^\tau_0|g'(t)| dt) < \infty$$. Then for $f \in \mathscr{D}(A)$ with $f(X(t))$ right continuous the identity $$E_xg(\tau)f(X(\tau)) - g(0)f(x) = E_x(\int^\tau_0 g'(s)f(X(s)) ds) + E_x(\int^\tau_0 g(s)Af(X(s)) ds)$$ is a simple generalization of Dynkin's identity $(g(t) \equiv 1)$. With further restrictions on $f$ and $\tau$ the following identity is obtained as a corollary: $$E_x(f(X(\tau))) = f(x) + \sum^{n-1}_{k=1} \frac{(-1)^{k-1}}{k!} E_x(\tau^k A^k f(X(\tau))) \\ + \frac{(-1)^{n-1}}{(n-1)!} E_x(\int^\tau_0 u^{n-1}A^nf(X(u)) du)$$ These identities are applied to processes with stationary independent increments to obtain a number of new and known results relating the moments of stopping times to the moments of the stopped processes.


Download Citation

Krishna B. Athreya. Thomas G. Kurtz. "A Generalization of Dynkin's Identity and Some Applications." Ann. Probab. 1 (4) 570 - 579, August, 1973.


Published: August, 1973
First available in Project Euclid: 19 April 2007

zbMATH: 0264.60048
MathSciNet: MR348847
Digital Object Identifier: 10.1214/aop/1176996886

Keywords: 6060 , 6069 , Dynkin's identity , infinitesimal generator semigroup , Markov process , Martingales , stationary independent increments , stopping time

Rights: Copyright © 1973 Institute of Mathematical Statistics

Vol.1 • No. 4 • August, 1973
Back to Top