Abstract
For integers $s,t \ge 2$, the Ramsey number $r(s,t)$ denotes the minimum $n$ such that every $n$-vertex graph contains a clique of order $s$ or an independent set of order $t$. In this paper we prove \[r(4,t) = \Omega\Bigl(\frac{t^3}{\mathrm{log}^4 t}\Bigr)$ \quad\quad\quad \mathrm{as}\ t \rightarrow \infty,\]which determines $r(4,t)$ up to a factor of order $\mathrm{log}^2 t$, and solves a conjecture of Erdős.
Citation
Sam Mattheus. Jacques Verstraete. "The asymptotics of r(4,t)." Ann. of Math. (2) 199 (2) 919 - 941, March 2024. https://doi.org/10.4007/annals.2024.199.2.8
Information