March 2024 The asymptotics of r(4,t)
Sam Mattheus, Jacques Verstraete
Author Affiliations +
Ann. of Math. (2) 199(2): 919-941 (March 2024). DOI: 10.4007/annals.2024.199.2.8

Abstract

For integers $s,t \ge 2$, the Ramsey number $r(s,t)$ denotes the minimum $n$ such that every $n$-vertex graph contains a clique of order $s$ or an independent set of order $t$. In this paper we prove \[r(4,t) = \Omega\Bigl(\frac{t^3}{\mathrm{log}^4 t}\Bigr)$ \quad\quad\quad \mathrm{as}\ t \rightarrow \infty,\]which determines $r(4,t)$ up to a factor of order $\mathrm{log}^2 t$, and solves a conjecture of Erdős.

Citation

Download Citation

Sam Mattheus. Jacques Verstraete. "The asymptotics of r(4,t)." Ann. of Math. (2) 199 (2) 919 - 941, March 2024. https://doi.org/10.4007/annals.2024.199.2.8

Information

Published: March 2024
First available in Project Euclid: 5 March 2024

Digital Object Identifier: 10.4007/annals.2024.199.2.8

Subjects:
Primary: 05B25 , 05D10 , 05D40

Keywords: off-diagonal , Ramsey , unital

Rights: Copyright © 2024 Department of Mathematics, Princeton University

JOURNAL ARTICLE
23 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.199 • No. 2 • March 2024
Back to Top