Open Access
March, 1955 Asymptotic Solutions of the Compound Decision Problem for Two Completely Specified Distributions
James F. Hannan, Herbert Robbins
Ann. Math. Statist. 26(1): 37-51 (March, 1955). DOI: 10.1214/aoms/1177728591

Abstract

A compound decision problem consists of the simultaneous consideration of $n$ decision problems having identical formal structure. Decision functions are allowed to depend on the data from all $n$ components. The risk is taken to be the average of the resulting risks in the component problems. A heuristic argument for the existence of good asymptotic solutions was given by Robbins ([1] Sec. 6) and was preceded by an example (component decisions between $N(-1,1)$ and $N(1,1)$) exhibiting, for sufficiently large $n$, a decision function whose risk was uniformly close to the envelope risk function of "simple" decision functions. The present paper considers the class of problems where the components involve decision between any two completely specified distributions, with the risk taken to be the weighted probability of wrong decision. For all sufficiently large $n$, decision functions are found whose risks are uniformly close to the envelope risk function of "invariant" decision functions.

Citation

Download Citation

James F. Hannan. Herbert Robbins. "Asymptotic Solutions of the Compound Decision Problem for Two Completely Specified Distributions." Ann. Math. Statist. 26 (1) 37 - 51, March, 1955. https://doi.org/10.1214/aoms/1177728591

Information

Published: March, 1955
First available in Project Euclid: 28 April 2007

zbMATH: 0064.38703
MathSciNet: MR67444
Digital Object Identifier: 10.1214/aoms/1177728591

Rights: Copyright © 1955 Institute of Mathematical Statistics

Vol.26 • No. 1 • March, 1955
Back to Top