Open Access
2017 Longitudes in $\mathrm{SL}_2$ representations of link groups and Milnor–Witt $K_2$-groups of fields
Takefumi Nosaka
Ann. K-Theory 2(2): 211-233 (2017). DOI: 10.2140/akt.2017.2.211

Abstract

We describe an arithmetic K2-valued invariant for longitudes of a link L 3, obtained from an SL2 representation of the link group. Furthermore, we show a nontriviality on the elements, and compute the elements for some links. As an application, we develop a method for computing longitudes in SL˜2top() representations for link groups, where SL˜2top() is the universal covering group of  SL2().

Citation

Download Citation

Takefumi Nosaka. "Longitudes in $\mathrm{SL}_2$ representations of link groups and Milnor–Witt $K_2$-groups of fields." Ann. K-Theory 2 (2) 211 - 233, 2017. https://doi.org/10.2140/akt.2017.2.211

Information

Received: 30 June 2015; Revised: 4 March 2016; Accepted: 23 March 2016; Published: 2017
First available in Project Euclid: 16 November 2017

zbMATH: 06673994
MathSciNet: MR3590345
Digital Object Identifier: 10.2140/akt.2017.2.211

Subjects:
Primary: 19C20 , 19C30 , 57M27 , 57Q45
Secondary: 19C40 , 57M10 , 57M50

Keywords: knot , Milnor $K$-group , parabolic representations , quandle , Witt ring

Rights: Copyright © 2017 Mathematical Sciences Publishers

Vol.2 • No. 2 • 2017
MSP
Back to Top