Open Access
November 2016 On the Araki–Lieb–Thirring inequality in the semifinite von Neumann algebra
Yazhou Han
Ann. Funct. Anal. 7(4): 622-635 (November 2016). DOI: 10.1215/20088752-3660864

Abstract

This paper extends a recent matrix trace inequality of Bourin–Lee to semifinite von Neumann algebras. This provides a generalization of the Lieb–Thirring-type inequality in von Neumann algebras due to Kosaki. Some new inequalities, even in the matrix case, are also given for the Heinz means.

Citation

Download Citation

Yazhou Han. "On the Araki–Lieb–Thirring inequality in the semifinite von Neumann algebra." Ann. Funct. Anal. 7 (4) 622 - 635, November 2016. https://doi.org/10.1215/20088752-3660864

Information

Received: 15 December 2015; Accepted: 5 May 2016; Published: November 2016
First available in Project Euclid: 23 September 2016

zbMATH: 06667758
MathSciNet: MR3550940
Digital Object Identifier: 10.1215/20088752-3660864

Subjects:
Primary: 47A63
Secondary: 46L52

Keywords: $\tau$-measurable operator , Araki–Lieb–Thirring inequality , von Neumann algebra

Rights: Copyright © 2016 Tusi Mathematical Research Group

Vol.7 • No. 4 • November 2016
Back to Top