Open Access
2015 Convex components and multi-slices in real topological vector spaces
F. J. Garcia-Pacheco
Ann. Funct. Anal. 6(3): 73-86 (2015). DOI: 10.15352/afa/06-3-7
Abstract

It is shown that, in a non-necessarily Hausdorff real topological vector space, if a subset is a countable disjoint union of convex sets closed in the subset, then those convex sets must be its convex components. On the other hand, by means of convex components we extend the notion of extreme point to non-convex sets, which entails a new equivalent reformulation of the Krein--Milman property (involving drops among other objects). Finally, we study the nature of convex functions and provide some results on their support in order to introduce the concept of multi-slice, that is, slices determined by convex functions (instead of by linear functions). Among other things, we prove that the boundary of a closed convex set with non-empty interior can be obtained as the set of support points of a certain lower semi-continuous convex function on that convex set.

References

1.

R. Armario, F.J. García-Pacheco and F.J. Pérez-Férnandez, On the Krein–Milman Property and the Bade Property, Linear Alg. Appl. 436 (2012), no. 5, 1489–1502.  MR2890933 10.1016/j.laa.2011.08.018 R. Armario, F.J. García-Pacheco and F.J. Pérez-Férnandez, On the Krein–Milman Property and the Bade Property, Linear Alg. Appl. 436 (2012), no. 5, 1489–1502.  MR2890933 10.1016/j.laa.2011.08.018

2.

N. Bourbaki, Topological vector spaces. Chapters 1–5, Translated from the French by H. G. Eggleston and S. Madan, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987.  MR910295 N. Bourbaki, Topological vector spaces. Chapters 1–5, Translated from the French by H. G. Eggleston and S. Madan, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987.  MR910295

3.

V.P. Fonf, J. Lindenstrauss and R.R. Phelps, Infinite dimensional convexity, Handbook of the geometry of Banach spaces, Vol. I, 599–670, North-Holland, Amsterdam, 2001.  MR1863703 10.1016/S1874-5849(01)80017-6 V.P. Fonf, J. Lindenstrauss and R.R. Phelps, Infinite dimensional convexity, Handbook of the geometry of Banach spaces, Vol. I, 599–670, North-Holland, Amsterdam, 2001.  MR1863703 10.1016/S1874-5849(01)80017-6

4.

K. Kuratowski, Topology. Vol. II., New edition, revised and augmented. Translated from the French by A. Kirkor Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw 1968.  MR259835 K. Kuratowski, Topology. Vol. II., New edition, revised and augmented. Translated from the French by A. Kirkor Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw 1968.  MR259835

5.

F.J. García-Pacheco, Four Non-Linear Problems on Normed Spaces. Volumen I, Verlag Dr. Müller, Berlin, 2008. F.J. García-Pacheco, Four Non-Linear Problems on Normed Spaces. Volumen I, Verlag Dr. Müller, Berlin, 2008.

6.

F.J. García-Pacheco, The Universal Renorming, Israel J. Math. 202 (2014), no. 1, 405–422.  MR3265327 10.1007/s11856-014-1074-3 06361341 F.J. García-Pacheco, The Universal Renorming, Israel J. Math. 202 (2014), no. 1, 405–422.  MR3265327 10.1007/s11856-014-1074-3 06361341

7.

F.J. García-Pacheco and J.B. Seoane-Sepúlveda, Rotundity, smoothness and drops in Banach spaces, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no.3, 473–478.  MR2457963 euclid.bbms/1222783094 F.J. García-Pacheco and J.B. Seoane-Sepúlveda, Rotundity, smoothness and drops in Banach spaces, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no.3, 473–478.  MR2457963 euclid.bbms/1222783094

8.

R.E. Huff and P.D. Morris, Geometric characterizations of the Radon–Nikodým property in Banach spaces., Studia Math. 56 (1976), no. 2, 157–164.  MR412776 R.E. Huff and P.D. Morris, Geometric characterizations of the Radon–Nikodým property in Banach spaces., Studia Math. 56 (1976), no. 2, 157–164.  MR412776

9.

M. Krein and D. Milman, On extreme points of regular convex sets, Studia Math. 9 (1940), 133–138.  MR4990 M. Krein and D. Milman, On extreme points of regular convex sets, Studia Math. 9 (1940), 133–138.  MR4990

10.

V. Montesinos, Drop property equals reflexivity, Studia Math. 87 (1987), no. 1, 93–100.  MR924764 V. Montesinos, Drop property equals reflexivity, Studia Math. 87 (1987), no. 1, 93–100.  MR924764

11.

R.R. Phelps, Dentability and extreme points in Banach spaces, J. Funct. Anal. 17 (1974), 79–80.  MR352941 10.1016/0022-1236(74)90005-6 0287.46026 R.R. Phelps, Dentability and extreme points in Banach spaces, J. Funct. Anal. 17 (1974), 79–80.  MR352941 10.1016/0022-1236(74)90005-6 0287.46026

12.

S. Rolewicz, On drop property, Studia Math. 85 (1987), no. 1, 27–35.  MR879413 S. Rolewicz, On drop property, Studia Math. 85 (1987), no. 1, 27–35.  MR879413

13.

F.A. Valentine, Convex sets, McGraw-Hill, New York, 1964.  MR170264 F.A. Valentine, Convex sets, McGraw-Hill, New York, 1964.  MR170264
Copyright © 2015 Tusi Mathematical Research Group
F. J. Garcia-Pacheco "Convex components and multi-slices in real topological vector spaces," Annals of Functional Analysis 6(3), 73-86, (2015). https://doi.org/10.15352/afa/06-3-7
Published: 2015
Vol.6 • No. 3 • 2015
Back to Top