Translator Disclaimer
2015 Applications of an analogue of conditional Wiener integrals
Seung Jun Chang, Hyun Soo Chung, Il Yong Lee
Ann. Funct. Anal. 6(2): 116-132 (2015). DOI: 10.15352/afa/06-2-11

Abstract

In this paper, we obtain formulas for the analogue of conditional Wiener integrals for the functional $F$ of the form $$ F(x) = \exp\Big\{ \int_{0}^{T} V(x(t)) dt \Big\}, \quad x\in C[0,T] $$ where $V: \Bbb{R} \rightarrow \Bbb{R}$ is a potential function. We then apply this formula to obtain several integration formulas for the functionals involving various potential functions which is used in quantum mechanics and other physical theories.

Citation

Download Citation

Seung Jun Chang. Hyun Soo Chung. Il Yong Lee. "Applications of an analogue of conditional Wiener integrals." Ann. Funct. Anal. 6 (2) 116 - 132, 2015. https://doi.org/10.15352/afa/06-2-11

Information

Published: 2015
First available in Project Euclid: 19 December 2014

zbMATH: 1347.60098
MathSciNet: MR3292520
Digital Object Identifier: 10.15352/afa/06-2-11

Subjects:
Primary: 60J65
Secondary: 28C20, ‎43A32

Rights: Copyright © 2015 Tusi Mathematical Research Group

JOURNAL ARTICLE
17 PAGES


SHARE
Vol.6 • No. 2 • 2015
Back to Top