Open Access
2013 $2$-local derivations on algebras of locally measurable operators
Shavkat Abdullaevich Ayupov, Amir Alauadinov, Karimbergen Kudaybergenov
Ann. Funct. Anal. 4(2): 110-117 (2013). DOI: 10.15352/afa/1399899529

Abstract

‎The paper is devoted to $2$-local derivations on the algebra $LS(M)$‎ ‎of all locally measurable operators affiliated with a type‎ ‎I$_\infty$ von Neumann algebra $M$‎. ‎We prove that every $2$-local‎ ‎derivations on any $*$-subalgebra $\mathcal{A}$ in $LS(M)$‎, ‎such‎ ‎that $M\subseteq\mathcal{A}$‎, ‎is a derivation‎.

Citation

Download Citation

Shavkat Abdullaevich Ayupov. Amir Alauadinov. Karimbergen Kudaybergenov. "$2$-local derivations on algebras of locally measurable operators." Ann. Funct. Anal. 4 (2) 110 - 117, 2013. https://doi.org/10.15352/afa/1399899529

Information

Published: 2013
First available in Project Euclid: 12 May 2014

zbMATH: 1277.46030
MathSciNet: MR3034934
Digital Object Identifier: 10.15352/afa/1399899529

Subjects:
Primary: 46L51
Secondary: 47B47

Keywords: ‎$2$-local derivation , derivation‎ , measurable operator

Rights: Copyright © 2013 Tusi Mathematical Research Group

Vol.4 • No. 2 • 2013
Back to Top