Open Access
2012 Domain of the triple band matrix on some Maddox's spaces
Feyzi Başar, Ahmet Faruk Çakmak
Ann. Funct. Anal. 3(1): 32-48 (2012). DOI: 10.15352/afa/1399900022

Abstract

‎The sequence spaces $\ell_\infty(p)$‎, ‎$c(p)$ and $c_0(p)$ were‎ ‎introduced and studied by Maddox [Proc‎. ‎Cambridge Philos‎. ‎Soc‎. ‎64‎ ‎(1968)‎, ‎335-340]‎. ‎In the present paper‎, ‎we introduce the sequence‎ ‎spaces $\ell_\infty(B,p)$‎, ‎$c(B,p)$ and $c_0(B,p)$ of non-absolute‎ ‎type which are derived by the triple band matrix $B(r,s,t)$ and is‎ ‎proved that the spaces $\ell_\infty(B,p)$‎, ‎$c(B,p)$ and $c_0(B,p)$‎ ‎are paranorm isomorphic to the spaces $\ell_\infty(p)$‎, ‎$c(p)$ and‎ ‎$c_0(p)$; respectively‎. ‎Besides this‎, ‎the $\alpha$-‎, ‎$\beta$‎- ‎and‎ ‎$\gamma$-duals of the spaces $\ell_\infty(B,p)$‎, ‎$c(B,p)$ and‎ ‎$c_0(B,p)$ are computed and the bases of the spaces $c(B,p)$ and‎ ‎$c_0(B,p)$ are constructed‎. ‎Finally‎, ‎the matrix mappings from the‎ ‎sequence spaces $\lambda(B,p)$ to a given sequence space $\mu$ and‎ ‎from the sequence space $\mu$ to the sequence space $\lambda(B,p)$‎ ‎are characterized‎, ‎where $\lambda\in\{\ell_\infty,c,c_0\}$‎.

Citation

Download Citation

Feyzi Başar. Ahmet Faruk Çakmak. "Domain of the triple band matrix on some Maddox's spaces." Ann. Funct. Anal. 3 (1) 32 - 48, 2012. https://doi.org/10.15352/afa/1399900022

Information

Published: 2012
First available in Project Euclid: 12 May 2014

zbMATH: 1262.46003
MathSciNet: MR2903266
Digital Object Identifier: 10.15352/afa/1399900022

Subjects:
Primary: 46A45
Secondary: 40C05

Keywords: $\beta$‎- ‎and $\gamma$-duals , $f$- , ‎AD property and matrix transformations , ‎matrix domain , Paranormed sequence space , ‎triple band matrix

Rights: Copyright © 2012 Tusi Mathematical Research Group

Vol.3 • No. 1 • 2012
Back to Top