Open Access
September 2015 Combining nonexchangeable functional or survival data sources in oncology using generalized mixture commensurate priors
Thomas A. Murray, Brian P. Hobbs, Bradley P. Carlin
Ann. Appl. Stat. 9(3): 1549-1570 (September 2015). DOI: 10.1214/15-AOAS840


Conventional approaches to statistical inference preclude structures that facilitate incorporation of supplemental information acquired from similar circumstances. For example, the analysis of data obtained using perfusion computed tomography to characterize functional imaging biomarkers in cancerous regions of the liver can benefit from partially informative data collected concurrently in noncancerous regions. This paper presents a hierarchical model structure that leverages all available information about a curve, using penalized splines, while accommodating important between-source features. Our proposed methods flexibly borrow strength from the supplemental data to a degree that reflects the commensurability of the supplemental curve with the primary curve. We investigate our method’s properties for nonparametric regression via simulation, and apply it to a set of liver cancer data. We also apply our method for a semiparametric hazard model to data from a clinical trial that compares time to disease progression for three colorectal cancer treatments, while supplementing inference with information from a previous trial that tested the current standard of care.


Download Citation

Thomas A. Murray. Brian P. Hobbs. Bradley P. Carlin. "Combining nonexchangeable functional or survival data sources in oncology using generalized mixture commensurate priors." Ann. Appl. Stat. 9 (3) 1549 - 1570, September 2015.


Received: 1 March 2014; Revised: 1 March 2015; Published: September 2015
First available in Project Euclid: 2 November 2015

zbMATH: 06525998
MathSciNet: MR3418735
Digital Object Identifier: 10.1214/15-AOAS840

Keywords: Bayesian hierarchical model , Clinical trials , colorectal cancer , commensurate prior , computed tomographic imaging , evidence synthesis , mixture priors , penalized splines , proportional hazards , semiparametric methods

Rights: Copyright © 2015 Institute of Mathematical Statistics

Vol.9 • No. 3 • September 2015
Back to Top