Open Access
December 2014 Probit models for capture–recapture data subject to imperfect detection, individual heterogeneity and misidentification
Brett T. McClintock, Larissa L. Bailey, Brian P. Dreher, William A. Link
Ann. Appl. Stat. 8(4): 2461-2484 (December 2014). DOI: 10.1214/14-AOAS783
Abstract

As noninvasive sampling techniques for animal populations have become more popular, there has been increasing interest in the development of capture–recapture models that can accommodate both imperfect detection and misidentification of individuals (e.g., due to genotyping error). However, current methods do not allow for individual variation in parameters, such as detection or survival probability. Here we develop misidentification models for capture–recapture data that can simultaneously account for temporal variation, behavioral effects and individual heterogeneity in parameters. To facilitate Bayesian inference using our approach, we extend standard probit regression techniques to latent multinomial models where the dimension and zeros of the response cannot be observed. We also present a novel Metropolis–Hastings within Gibbs algorithm for fitting these models using Markov chain Monte Carlo. Using closed population abundance models for illustration, we re-visit a DNA capture–recapture population study of black bears in Michigan, USA and find evidence of misidentification due to genotyping error, as well as temporal, behavioral and individual variation in detection probability. We also estimate a salamander population of known size from laboratory experiments evaluating the effectiveness of a marking technique commonly used for amphibians and fish. Our model was able to reliably estimate the size of this population and provided evidence of individual heterogeneity in misidentification probability that is attributable to variable mark quality. Our approach is more computationally demanding than previously proposed methods, but it provides the flexibility necessary for a much broader suite of models to be explored while properly accounting for uncertainty introduced by misidentification and imperfect detection. In the absence of misidentification, our probit formulation also provides a convenient and efficient Gibbs sampler for Bayesian analysis of traditional closed population capture–recapture data.

References

1.

Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 669–679. MR1224394 10.1080/01621459.1993.10476321Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 669–679. MR1224394 10.1080/01621459.1993.10476321

2.

Bailey, L. L. (2004). Evaluating elastomer marking and photo-identification methods for terrestrial salamanders: Marking effects and observer bias. Herpetological Review 35 38–41.Bailey, L. L. (2004). Evaluating elastomer marking and photo-identification methods for terrestrial salamanders: Marking effects and observer bias. Herpetological Review 35 38–41.

3.

Basu, S. and Ebrahimi, N. (2001). Bayesian capture–recapture methods for error detection and estimation of population size: Heterogeneity and dependence. Biometrika 88 269–279. MR1841274 10.1093/biomet/88.1.269Basu, S. and Ebrahimi, N. (2001). Bayesian capture–recapture methods for error detection and estimation of population size: Heterogeneity and dependence. Biometrika 88 269–279. MR1841274 10.1093/biomet/88.1.269

4.

Bonner, S. J. and Holmberg, J. (2013). Mark-recapture with multiple, non-invasive marks. Biometrics 69 766–775. MR3106605 10.1111/biom.12045Bonner, S. J. and Holmberg, J. (2013). Mark-recapture with multiple, non-invasive marks. Biometrics 69 766–775. MR3106605 10.1111/biom.12045

5.

Bonner, S. J. and Schofield, M. R. (2013). MC(MC)MC: Exploring Monte Carlo integration with MCMC for mark-recapture models with individual covariates. Methods in Ecology and Evolution.  DOI:10.1111/2041-210X.12095.Bonner, S. J. and Schofield, M. R. (2013). MC(MC)MC: Exploring Monte Carlo integration with MCMC for mark-recapture models with individual covariates. Methods in Ecology and Evolution.  DOI:10.1111/2041-210X.12095.

6.

Castledine, B. J. (1981). A Bayesian analysis of multiple-recapture sampling for a closed population. Biometrika 68 197–210. MR614956 10.1093/biomet/68.1.197Castledine, B. J. (1981). A Bayesian analysis of multiple-recapture sampling for a closed population. Biometrika 68 197–210. MR614956 10.1093/biomet/68.1.197

7.

Coull, B. A. and Agresti, A. (1999). The use of mixed logit models to reflect heterogeneity in capture–recapture studies. Biometrics 55 294–301.Coull, B. A. and Agresti, A. (1999). The use of mixed logit models to reflect heterogeneity in capture–recapture studies. Biometrics 55 294–301.

8.

Darroch, J. N. (1958). The multiple-recapture census. I. Estimation of a closed population. Biometrika 45 343–359. MR119360Darroch, J. N. (1958). The multiple-recapture census. I. Estimation of a closed population. Biometrika 45 343–359. MR119360

9.

Dorazio, R. M. and Rodriguez, D. T. (2012). A Gibbs sampler for Bayesian analysis of site-occupancy data. Methods in Ecology and Evolution 3 1093–1098.Dorazio, R. M. and Rodriguez, D. T. (2012). A Gibbs sampler for Bayesian analysis of site-occupancy data. Methods in Ecology and Evolution 3 1093–1098.

10.

Dreher, B. P., Winterstein, S. R., Scribner, K. T., Lukacs, P. M., Etter, D. R., Rosa, G. J. M., Lopez, V. A., Libants, S. and Filcek, K. B. (2007). Noninvasive estimation of black bear abundance incorporating genotyping errors and harvested bears. Journal of Wildlife Management 71 2684–2693.Dreher, B. P., Winterstein, S. R., Scribner, K. T., Lukacs, P. M., Etter, D. R., Rosa, G. J. M., Lopez, V. A., Libants, S. and Filcek, K. B. (2007). Noninvasive estimation of black bear abundance incorporating genotyping errors and harvested bears. Journal of Wildlife Management 71 2684–2693.

11.

Fienberg, S. E., Johnson, M. S. and Junker, B. W. (1999). Classical multilevel and Bayesian approaches to population size estimation using multiple lists. J. Roy. Statist. Soc. Ser. A 162 383–406.Fienberg, S. E., Johnson, M. S. and Junker, B. W. (1999). Classical multilevel and Bayesian approaches to population size estimation using multiple lists. J. Roy. Statist. Soc. Ser. A 162 383–406.

12.

Fienberg, S. E. and Manrique-Vallier, D. (2009). Integrated methodology for multiple systems estimation and record linkage using a missing data formulation. AStA Adv. Stat. Anal. 93 49–60. MR2476299 10.1007/s10182-008-0084-zFienberg, S. E. and Manrique-Vallier, D. (2009). Integrated methodology for multiple systems estimation and record linkage using a missing data formulation. AStA Adv. Stat. Anal. 93 49–60. MR2476299 10.1007/s10182-008-0084-z

13.

George, E. I. and Robert, C. P. (1992). Capture–recapture estimation via Gibbs sampling. Biometrika 79 677–683. MR1209469George, E. I. and Robert, C. P. (1992). Capture–recapture estimation via Gibbs sampling. Biometrika 79 677–683. MR1209469

14.

Gimenez, O. and Choquet, R. (2010). Individual heterogeneity in studies on marked animals using numerical integration: Capture–recapture mixed models. Ecology 91 951–957.Gimenez, O. and Choquet, R. (2010). Individual heterogeneity in studies on marked animals using numerical integration: Capture–recapture mixed models. Ecology 91 951–957.

15.

Hall, A. J., McConnell, B. J. and Barker, R. J. (2001). Factors affecting first-year survival in grey seals and their implications for life history strategy. Journal of Animal Ecology 70 138–149.Hall, A. J., McConnell, B. J. and Barker, R. J. (2001). Factors affecting first-year survival in grey seals and their implications for life history strategy. Journal of Animal Ecology 70 138–149.

16.

Hastings, K. K., Hiby, L. A. and Small, R. J. (2008). Evaluation of a computer-assisted photograph-matching system to monitor naturally marked harbor seals at Tugidak Island, Alaska. Journal of Mammalogy 89 1201–1211.Hastings, K. K., Hiby, L. A. and Small, R. J. (2008). Evaluation of a computer-assisted photograph-matching system to monitor naturally marked harbor seals at Tugidak Island, Alaska. Journal of Mammalogy 89 1201–1211.

17.

Johnson, D. S., Conn, P. B., Hooten, M. B., Ray, J. C. and Pone, B. A. (2013). Spatial occupancy models for large data sets. Ecology 94 801–808.Johnson, D. S., Conn, P. B., Hooten, M. B., Ray, J. C. and Pone, B. A. (2013). Spatial occupancy models for large data sets. Ecology 94 801–808.

18.

Karanth, K. U. and Nichols, J. D. (1998). Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79 2852–2862.Karanth, K. U. and Nichols, J. D. (1998). Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79 2852–2862.

19.

Kauffman, M. J., Frick, W. F. and Linthicum, J. (2003). Estimation of habitat-specific demography and population growth for peregrine falcans in California. Ecological Applications 13 1802–1816.Kauffman, M. J., Frick, W. F. and Linthicum, J. (2003). Estimation of habitat-specific demography and population growth for peregrine falcans in California. Ecological Applications 13 1802–1816.

20.

Kernighan, B. W. and Ritchie, D. M. (1988). The C Programming Language, 2nd ed. Prentice Hall, Englewood Cliffs, NJ.Kernighan, B. W. and Ritchie, D. M. (1988). The C Programming Language, 2nd ed. Prentice Hall, Englewood Cliffs, NJ.

21.

King, R. and Brooks, S. P. (2008). On the Bayesian estimation of a closed population size in the presence of heterogeneity and model uncertainty. Biometrics 64 816–824. MR2526632 10.1111/j.1541-0420.2007.00938.xKing, R. and Brooks, S. P. (2008). On the Bayesian estimation of a closed population size in the presence of heterogeneity and model uncertainty. Biometrics 64 816–824. MR2526632 10.1111/j.1541-0420.2007.00938.x

22.

King, R., Brooks, S. P. and Coulson, T. (2008). Analyzing complex capture–recapture data in the presence of individual and temporal covariates and model uncertainty. Biometrics 64 1187–1195. MR2522267 10.1111/j.1541-0420.2008.00991.xKing, R., Brooks, S. P. and Coulson, T. (2008). Analyzing complex capture–recapture data in the presence of individual and temporal covariates and model uncertainty. Biometrics 64 1187–1195. MR2522267 10.1111/j.1541-0420.2008.00991.x

23.

Langtimm, C. A., O’Shea, T. J., Pradel, R. and Beck, C. A. (1998). Estimates of annual survival probabilities for adult Florida manatees Trichechus manatus latirostris. Ecology 79 981–997.Langtimm, C. A., O’Shea, T. J., Pradel, R. and Beck, C. A. (1998). Estimates of annual survival probabilities for adult Florida manatees Trichechus manatus latirostris. Ecology 79 981–997.

24.

Link, W. A. (2013). A cautionary note on the discrete uniform prior for the binomial N. Ecology 94 2173–2179.Link, W. A. (2013). A cautionary note on the discrete uniform prior for the binomial N. Ecology 94 2173–2179.

25.

Link, W. A., Yoshizaki, J., Bailey, L. L. and Pollock, K. H. (2010). Uncovering a latent multinomial: Analysis of mark-recapture data with misidentification. Biometrics 66 178–185. MR2756704 10.1111/j.1541-0420.2009.01244.xLink, W. A., Yoshizaki, J., Bailey, L. L. and Pollock, K. H. (2010). Uncovering a latent multinomial: Analysis of mark-recapture data with misidentification. Biometrics 66 178–185. MR2756704 10.1111/j.1541-0420.2009.01244.x

26.

Lukacs, P. M. and Burnham, K. P. (2005). Estimating population size from DNA-based closed capture–recapture data incorporating genotyping error. Journal of Wildlife Management 69 396–403.Lukacs, P. M. and Burnham, K. P. (2005). Estimating population size from DNA-based closed capture–recapture data incorporating genotyping error. Journal of Wildlife Management 69 396–403.

27.

Mackey, B. L., Durban, J. W., Middlemas, S. J. and Thompson, P. M. (2008). A Bayesian estimate of harbour seal survival using sparse photo-identification data. Journal of Zoology 274 18–27.Mackey, B. L., Durban, J. W., Middlemas, S. J. and Thompson, P. M. (2008). A Bayesian estimate of harbour seal survival using sparse photo-identification data. Journal of Zoology 274 18–27.

28.

Manrique-Vallier, D. and Fienberg, S. E. (2008). Population size estimation using individual level mixture models. Biom. J. 50 1051–1063. MR2649394 10.1002/bimj.200810448Manrique-Vallier, D. and Fienberg, S. E. (2008). Population size estimation using individual level mixture models. Biom. J. 50 1051–1063. MR2649394 10.1002/bimj.200810448

29.

McClintock, B. T., Conn, P. B., Alonso, R. S. and Crooks, K. R. (2013a). Integrated modeling of bilateral photo-identification data in mark-recapture analyses. Ecology 94 1464–1471.McClintock, B. T., Conn, P. B., Alonso, R. S. and Crooks, K. R. (2013a). Integrated modeling of bilateral photo-identification data in mark-recapture analyses. Ecology 94 1464–1471.

30.

McClintock, B. T., Hill, J. M., Fritz, L., Chumbley, K., Luxa, K. and Diefenbach, D. R. (2013b). Mark-resight abundance estimation under incomplete identification of marked individuals. Methods in Ecology and Evolution.  DOI:10.1111/2041-210X.12140.McClintock, B. T., Hill, J. M., Fritz, L., Chumbley, K., Luxa, K. and Diefenbach, D. R. (2013b). Mark-resight abundance estimation under incomplete identification of marked individuals. Methods in Ecology and Evolution.  DOI:10.1111/2041-210X.12140.

31.

Morrison, T. A., Yoshizaki, J., Nichols, J. D. and Bolger, D. T. (2011). Estimating survival in photographic capture–recapture studies: Overcoming misidentification error. Methods in Ecology and Evolution 2 454–463.Morrison, T. A., Yoshizaki, J., Nichols, J. D. and Bolger, D. T. (2011). Estimating survival in photographic capture–recapture studies: Overcoming misidentification error. Methods in Ecology and Evolution 2 454–463.

32.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978). Statistical-inference from capture data on closed animal populations. Wildlife Monographs 62 7–135.Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978). Statistical-inference from capture data on closed animal populations. Wildlife Monographs 62 7–135.

33.

Pledger, S. (2000). Unified maximum likelihood estimates for closed capture–recapture models using mixtures. Biometrics 56 434–442.Pledger, S. (2000). Unified maximum likelihood estimates for closed capture–recapture models using mixtures. Biometrics 56 434–442.

34.

Plummer, M., Best, N., Cowles, K. and Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News 6 7–11.Plummer, M., Best, N., Cowles, K. and Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News 6 7–11.

35.

Polson, N. G., Scott, J. G. and Windle, J. (2013). Bayesian inference for logistic models using Pólya–Gamma latent variables. J. Amer. Statist. Assoc. 108 1339–1349. MR3174712 10.1080/01621459.2013.829001Polson, N. G., Scott, J. G. and Windle, J. (2013). Bayesian inference for logistic models using Pólya–Gamma latent variables. J. Amer. Statist. Assoc. 108 1339–1349. MR3174712 10.1080/01621459.2013.829001

36.

Pradel, R. (2005). Multievent: An extension of multistate capture–recapture models to uncertain states. Biometrics 61 442–447. MR2140915 10.1111/j.1541-0420.2005.00318.xPradel, R. (2005). Multievent: An extension of multistate capture–recapture models to uncertain states. Biometrics 61 442–447. MR2140915 10.1111/j.1541-0420.2005.00318.x

37.

R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

38.

Royle, J. A. (2008). Modeling individual effects in the Cormack–Jolly–Seber model: A state-space formulation. Biometrics 64 364–370, 664. MR2432405 10.1111/j.1541-0420.2007.00891.xRoyle, J. A. (2008). Modeling individual effects in the Cormack–Jolly–Seber model: A state-space formulation. Biometrics 64 364–370, 664. MR2432405 10.1111/j.1541-0420.2007.00891.x

39.

Royle, J. A., Dorazio, R. M. and Link, W. A. (2007). Analysis of multinomial models with unknown index using data augmentation. J. Comput. Graph. Statist. 16 67–85. MR2345748 10.1198/106186007X181425Royle, J. A., Dorazio, R. M. and Link, W. A. (2007). Analysis of multinomial models with unknown index using data augmentation. J. Comput. Graph. Statist. 16 67–85. MR2345748 10.1198/106186007X181425

40.

Ruell, E. W., Riley, S. P. D., Douglas, M. R., Pollinger, J. P. and Crooks, K. R. (2009). Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture–recapture sampling. Journal of Mammalogy 90 129–135.Ruell, E. W., Riley, S. P. D., Douglas, M. R., Pollinger, J. P. and Crooks, K. R. (2009). Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture–recapture sampling. Journal of Mammalogy 90 129–135.

41.

Tancredi, A. and Liseo, B. (2011). A hierarchical Bayesian approach to record linkage and population size problems. Ann. Appl. Stat. 5 1553–1585. MR2849786 10.1214/10-AOAS447 euclid.aoas/1310562733 Tancredi, A. and Liseo, B. (2011). A hierarchical Bayesian approach to record linkage and population size problems. Ann. Appl. Stat. 5 1553–1585. MR2849786 10.1214/10-AOAS447 euclid.aoas/1310562733

42.

Tancredi, A., Auger-Méthé, M., Marcoux, M. and Liseo, B. (2013). Accounting for matching uncertainty in two stage capture–recapture experiments using photographic measurements of natural marks. Environ. Ecol. Stat. 20 647–665. MR3128764 10.1007/s10651-013-0239-2Tancredi, A., Auger-Méthé, M., Marcoux, M. and Liseo, B. (2013). Accounting for matching uncertainty in two stage capture–recapture experiments using photographic measurements of natural marks. Environ. Ecol. Stat. 20 647–665. MR3128764 10.1007/s10651-013-0239-2

43.

Thompson, S. K. (1992). Sampling. Wiley, New York. MR1193031Thompson, S. K. (1992). Sampling. Wiley, New York. MR1193031

44.

White, G. C. and Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study 46 Supplement 120–138.White, G. C. and Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study 46 Supplement 120–138.

45.

Williams, B. K., Nichols, J. D. and Conroy, M. J. (2002). Analysis and Management of Animal Populations. Academic Press, San Diego, CA.Williams, B. K., Nichols, J. D. and Conroy, M. J. (2002). Analysis and Management of Animal Populations. Academic Press, San Diego, CA.

46.

Wright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E. and Gleeson, D. M. (2009). Incorporating genotype uncertainty into mark-recapture-type models for estimating abundance using DNA samples. Biometrics 65 833–840. MR2649856 10.1111/j.1541-0420.2008.01165.xWright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E. and Gleeson, D. M. (2009). Incorporating genotype uncertainty into mark-recapture-type models for estimating abundance using DNA samples. Biometrics 65 833–840. MR2649856 10.1111/j.1541-0420.2008.01165.x

47.

Yip, P. S. F., Bruno, G., Tajima, N., Seber, G. A. F., Buckland, S. T., Cormack, R. M., Unwin, N., Chang, Y. F., Fienberg, S. E., Junker, B. W., LaPorte, R. E., Libman, I. M. and McCarty, D. J. (1995a). Capture–recapture and multiple-record systems estimation I: History and theoretical development. American Journal of Epidemiology 142 1047–1058.Yip, P. S. F., Bruno, G., Tajima, N., Seber, G. A. F., Buckland, S. T., Cormack, R. M., Unwin, N., Chang, Y. F., Fienberg, S. E., Junker, B. W., LaPorte, R. E., Libman, I. M. and McCarty, D. J. (1995a). Capture–recapture and multiple-record systems estimation I: History and theoretical development. American Journal of Epidemiology 142 1047–1058.

48.

Yip, P. S. F., Bruno, G., Tajima, N., Seber, G. A. F., Buckland, S. T., Cormack, R. M., Unwin, N., Chang, Y. F., Fienberg, S. E., Junker, B. W., LaPorte, R. E., Libman, I. M. and McCarty, D. J. (1995b). Capture–recapture and multiple-record systems estimation II: Applications in human diseases. American Journal of Epidemiology 142 1059–1068.Yip, P. S. F., Bruno, G., Tajima, N., Seber, G. A. F., Buckland, S. T., Cormack, R. M., Unwin, N., Chang, Y. F., Fienberg, S. E., Junker, B. W., LaPorte, R. E., Libman, I. M. and McCarty, D. J. (1995b). Capture–recapture and multiple-record systems estimation II: Applications in human diseases. American Journal of Epidemiology 142 1059–1068.

49.

Yoshizaki, J. (2007). Use of natural tags in closed population capture–recapture studies: Modeling misidentification. Ph.D. thesis, North Carolina State Univ., Raleigh, NC. MR2710693Yoshizaki, J. (2007). Use of natural tags in closed population capture–recapture studies: Modeling misidentification. Ph.D. thesis, North Carolina State Univ., Raleigh, NC. MR2710693

50.

Yoshizaki, J., Pollock, K. H., Brownie, C. and Webster, R. A. (2009). Modeling misidentification errors in capture–recapture studies using photographic identification of evolving marks. Ecology 90 3–9.Yoshizaki, J., Pollock, K. H., Brownie, C. and Webster, R. A. (2009). Modeling misidentification errors in capture–recapture studies using photographic identification of evolving marks. Ecology 90 3–9.

51.

Yoshizaki, J., Brownie, C., Pollock, K. H. and Link, W. A. (2011). Modeling misidentification errors that result from use of genetic tags in capture–recapture studies. Environ. Ecol. Stat. 18 27–55. MR2783681 10.1007/s10651-009-0116-1Yoshizaki, J., Brownie, C., Pollock, K. H. and Link, W. A. (2011). Modeling misidentification errors that result from use of genetic tags in capture–recapture studies. Environ. Ecol. Stat. 18 27–55. MR2783681 10.1007/s10651-009-0116-1
Copyright © 2014 Institute of Mathematical Statistics
Brett T. McClintock, Larissa L. Bailey, Brian P. Dreher, and William A. Link "Probit models for capture–recapture data subject to imperfect detection, individual heterogeneity and misidentification," The Annals of Applied Statistics 8(4), 2461-2484, (December 2014). https://doi.org/10.1214/14-AOAS783
Published: December 2014
Vol.8 • No. 4 • December 2014
Back to Top