Open Access
December 2011 A combined efficient design for biomarker data subject to a limit of detection due to measuring instrument sensitivity
Enrique F. Schisterman, Albert Vexler, Aijun Ye, Neil J. Perkins
Ann. Appl. Stat. 5(4): 2651-2667 (December 2011). DOI: 10.1214/11-AOAS490
Abstract

Pooling specimens, a well-accepted sampling strategy in biomedical research, can be applied to reduce the cost of studying biomarkers. Even if the cost of a single assay is not a major restriction in evaluating biomarkers, pooling can be a powerful design that increases the efficiency of estimation based on data that is censored due to an instrument’s lower limit of detection (LLOD). However, there are situations when the pooling design strongly aggravates the detection limit problem. To combine the benefits of pooled assays and individual assays, hybrid designs that involve taking a sample of both pooled and individual specimens have been proposed. We examine the efficiency of these hybrid designs in estimating parameters of two systems subject to a LLOD: (1) normally distributed biomarker with normally distributed measurement error and pooling error; (2) Gamma distributed biomarker with double exponentially distributed measurement error and pooling error. Three-assay design and two-assay design with replicates are applied to estimate the measurement and pooling error. The Maximum likelihood method is used to estimate the parameters. We found that the simple one-pool design, where all assays but one are random individuals and a single pooled assay includes the remaining specimens, under plausible conditions, is very efficient and can be recommended for practical use.

References

1.

Chapman, D. G. (1956). Estimating the parameters of a truncated gamma distribution. Ann. Math. Statist. 27 498–506. MR78622 0072.36208 10.1214/aoms/1177728272 euclid.aoms/1177728272 Chapman, D. G. (1956). Estimating the parameters of a truncated gamma distribution. Ann. Math. Statist. 27 498–506. MR78622 0072.36208 10.1214/aoms/1177728272 euclid.aoms/1177728272

2.

Dorfman, R. (1943). The detection of defective members of large populations. Ann. Math. Statist. 14 436–440.Dorfman, R. (1943). The detection of defective members of large populations. Ann. Math. Statist. 14 436–440.

3.

Faraggi, D., Reiser, B. and Schisterman, E. F. (2003). ROC curve analysis for biomarkers based on pooled assessments. Stat. Med. 22 2515–2527.Faraggi, D., Reiser, B. and Schisterman, E. F. (2003). ROC curve analysis for biomarkers based on pooled assessments. Stat. Med. 22 2515–2527.

4.

Gupta, A. K. (1952). Estimation of the mean and standard deviation of a normal population from a censored sample. Biometrika 39 260–273. MR51483 0048.12004Gupta, A. K. (1952). Estimation of the mean and standard deviation of a normal population from a censored sample. Biometrika 39 260–273. MR51483 0048.12004

5.

Liu, A. and Schisterman, E. F. (2003). Comparison of diagnostic accuracy of biomarkers with pooled assessments. Biom. J. 45 631–644. MR1998141 10.1002/bimj.200390038Liu, A. and Schisterman, E. F. (2003). Comparison of diagnostic accuracy of biomarkers with pooled assessments. Biom. J. 45 631–644. MR1998141 10.1002/bimj.200390038

6.

Liu, A., Schisterman, E. F. and Teoh, E. (2004). Sample size and power calculation in comparing diagnostic accuracy of biomarkers with pooled assessments. J. Appl. Stat. 31 49–59. MR2041555 1046.62119 10.1080/0266476032000148948Liu, A., Schisterman, E. F. and Teoh, E. (2004). Sample size and power calculation in comparing diagnostic accuracy of biomarkers with pooled assessments. J. Appl. Stat. 31 49–59. MR2041555 1046.62119 10.1080/0266476032000148948

7.

Louis, G., Weiner, J., Whitcomb, B., Sperrazza, R., Schisterman, E., Lobdell, D., Crickard, K., Greizerstein, H. and Kostyniak, P. (2005). Environmental PCB exposure and risk of endometriosis. Human Reproduction 20 279–285.Louis, G., Weiner, J., Whitcomb, B., Sperrazza, R., Schisterman, E., Lobdell, D., Crickard, K., Greizerstein, H. and Kostyniak, P. (2005). Environmental PCB exposure and risk of endometriosis. Human Reproduction 20 279–285.

8.

Mumford, S. L., Schisterman, E. F., Vexler, A. and Liu, A. (2006). Pooling biospecimens and limits of detection: Effects on ROC curve analysis. Biostatistics 7 585–598.Mumford, S. L., Schisterman, E. F., Vexler, A. and Liu, A. (2006). Pooling biospecimens and limits of detection: Effects on ROC curve analysis. Biostatistics 7 585–598.

9.

Richardson, D. B. and Ciampi, A. (2003). Effects of exposure measurement error when an exposure variable is constrained by a lower limit. Am. J. Epidemiol. 157 355–363.Richardson, D. B. and Ciampi, A. (2003). Effects of exposure measurement error when an exposure variable is constrained by a lower limit. Am. J. Epidemiol. 157 355–363.

10.

Schisterman, E. and Vexler, A. (2008). To pool or not to pool, from whether to when: Applications of pooling to biospecimens subject to a limit of detection. Paediatric and Perinatal Epidemiology 22 486–496.Schisterman, E. and Vexler, A. (2008). To pool or not to pool, from whether to when: Applications of pooling to biospecimens subject to a limit of detection. Paediatric and Perinatal Epidemiology 22 486–496.

11.

Schisterman, E., Faraggi, D., Reiser, B. and Trevisan, M. (2001). Statistical inference for the area under the receiver operating characteristic curve in the presence of random measurement error. Am. J. Epidemiol. 154 174–179.Schisterman, E., Faraggi, D., Reiser, B. and Trevisan, M. (2001). Statistical inference for the area under the receiver operating characteristic curve in the presence of random measurement error. Am. J. Epidemiol. 154 174–179.

12.

Schisterman, E. F., Perkins, N. J., Liu, A. and Bondell, H. (2005). Optimal cut-point and its corresponding Youden index to discriminate individuals using pooled blood samples. Epidemiology 16 73–81.Schisterman, E. F., Perkins, N. J., Liu, A. and Bondell, H. (2005). Optimal cut-point and its corresponding Youden index to discriminate individuals using pooled blood samples. Epidemiology 16 73–81.

13.

Schisterman, E. F., Vexler, A., Whitcomb, B. W. and Liu, A. (2006). The limitations due to exposure detection limits for regression models. Am. J. Epidemiol. 163 374–383.Schisterman, E. F., Vexler, A., Whitcomb, B. W. and Liu, A. (2006). The limitations due to exposure detection limits for regression models. Am. J. Epidemiol. 163 374–383.

14.

Schisterman, E. F., Vexler, A., Mumford, S. L. and Perkins, N. J. (2010). Hybrid pooled-unpooled design for cost-efficient measurement of biomarkers. Stat. Med. 29 597–613. MR2758456Schisterman, E. F., Vexler, A., Mumford, S. L. and Perkins, N. J. (2010). Hybrid pooled-unpooled design for cost-efficient measurement of biomarkers. Stat. Med. 29 597–613. MR2758456

15.

Schisterman, E. F., Vexler, A., Ye, A. and Perkins, N. J. (2011). Supplement to “A combined efficient design for biomarker data subject to a limit of detection due to measuring instrument sensitivity.”  DOI:10.1214/11-AOAS490SUPP.Schisterman, E. F., Vexler, A., Ye, A. and Perkins, N. J. (2011). Supplement to “A combined efficient design for biomarker data subject to a limit of detection due to measuring instrument sensitivity.”  DOI:10.1214/11-AOAS490SUPP.

16.

Sham, P., Bader, J. S., Craig, I., O’Donovan, M. and Owen, M. (2002). DNA pooling: A tool for large-scale association studies. Nature Reviews Genetics 3 862–871.Sham, P., Bader, J. S., Craig, I., O’Donovan, M. and Owen, M. (2002). DNA pooling: A tool for large-scale association studies. Nature Reviews Genetics 3 862–871.

17.

Vexler, A., Liu, A. and Schisterman, E. F. (2006). Efficient design and analysis of biospecimens with measurements subject to detection limit. Biom. J. 48 780–791. MR2291289 10.1002/bimj.200610266Vexler, A., Liu, A. and Schisterman, E. F. (2006). Efficient design and analysis of biospecimens with measurements subject to detection limit. Biom. J. 48 780–791. MR2291289 10.1002/bimj.200610266

18.

Vexler, A., Schisterman, E. F. and Liu, A. (2008). Estimation of ROC curves based on stably distributed biomarkers subject to measurement error and pooling mixtures. Stat. Med. 27 280–296. MR2412708 10.1002/sim.3035Vexler, A., Schisterman, E. F. and Liu, A. (2008). Estimation of ROC curves based on stably distributed biomarkers subject to measurement error and pooling mixtures. Stat. Med. 27 280–296. MR2412708 10.1002/sim.3035

19.

Vexler, A., Liu, A., Eliseeva, E. and Schisterman, E. F. (2008). Maximum likelihood ratio tests for comparing the discriminatory ability of biomarkers subject to limit of detection. Biometrics 64 895–903. MR2526641 10.1111/j.1541-0420.2007.00941.xVexler, A., Liu, A., Eliseeva, E. and Schisterman, E. F. (2008). Maximum likelihood ratio tests for comparing the discriminatory ability of biomarkers subject to limit of detection. Biometrics 64 895–903. MR2526641 10.1111/j.1541-0420.2007.00941.x

20.

Weinberg, C. and Umbach, D. (1999). Using pooled exposure assessment to improve efficiency in case–control studies. Biometrics 55 718–726.Weinberg, C. and Umbach, D. (1999). Using pooled exposure assessment to improve efficiency in case–control studies. Biometrics 55 718–726.

21.

Yee, T. W. (2010). VGAM: Vector generalized linear and additive models. R package version 0.8-1.Yee, T. W. (2010). VGAM: Vector generalized linear and additive models. R package version 0.8-1.

22.

Zhang, S.-D. and Gant, T. W. (2005). Effect of pooling samples on the efficiency of comparative studies using microarrays. Bioinformatics 21 4378–4383.Zhang, S.-D. and Gant, T. W. (2005). Effect of pooling samples on the efficiency of comparative studies using microarrays. Bioinformatics 21 4378–4383.
Copyright © 2011 Institute of Mathematical Statistics
Enrique F. Schisterman, Albert Vexler, Aijun Ye, and Neil J. Perkins "A combined efficient design for biomarker data subject to a limit of detection due to measuring instrument sensitivity," The Annals of Applied Statistics 5(4), 2651-2667, (December 2011). https://doi.org/10.1214/11-AOAS490
Published: December 2011
Vol.5 • No. 4 • December 2011
Back to Top