Open Access
September 2020 The Jensen effect and functional single index models: Estimating the ecological implications of nonlinear reaction norms
Zi Ye, Giles Hooker, Stephen P. Ellner
Ann. Appl. Stat. 14(3): 1326-1341 (September 2020). DOI: 10.1214/20-AOAS1349
Abstract

This paper develops tools to characterize how species are affected by environmental variability, based on a functional single index model relating a response such as growth rate to environmental conditions. In ecology the curvature of such responses are used, via Jensen’s inequality, to determine whether environmental variability is harmful or beneficial, and differing nonlinear responses to environmental variability can contribute to the coexistence of competing species.

Here, we address estimation and inference for these models with observational data on individual responses to environmental conditions. Because nonparametric estimation of the curvature (second derivative) in a nonparametric functional single index model requires unrealistic sample sizes, we instead focus on directly estimating the effect of the nonlinearity by comparing the average response to a variable environment with the response at the expected environment, which we call the Jensen Effect. We develop a test statistic to assess whether this effect is significantly different from zero. In doing so we reinterpret the SiZer method of Chaudhuri and Marron (J. Amer. Statist. Assoc. 94 (1999) 807–823) by maximizing a test statistic over smoothing parameters. We show that our proposed method works well both in simulations and on real ecological data from the long-term data set described in Drake (Proc. R. Soc. Lond., B Biol. Sci. 272 (2005) 1823–1827).

References

1.

Chaudhuri, P. and Marron, J. S. (1999). SiZer for exploration of structures in curves. J. Amer. Statist. Assoc. 94 807–823. 1072.62556 10.1080/01621459.1999.10474186Chaudhuri, P. and Marron, J. S. (1999). SiZer for exploration of structures in curves. J. Amer. Statist. Assoc. 94 807–823. 1072.62556 10.1080/01621459.1999.10474186

2.

Chen, D., Hall, P. and Müller, H.-G. (2011). Single and multiple index functional regression models with nonparametric link. Ann. Statist. 39 1720–1747. 1220.62040 10.1214/11-AOS882 euclid.aos/1311600281Chen, D., Hall, P. and Müller, H.-G. (2011). Single and multiple index functional regression models with nonparametric link. Ann. Statist. 39 1720–1747. 1220.62040 10.1214/11-AOS882 euclid.aos/1311600281

3.

Chesson, P. (1994). Multispecies competition in variable environments. Theor. Popul. Biol. 45 227–276. 0804.92025 10.1006/tpbi.1994.1013Chesson, P. (1994). Multispecies competition in variable environments. Theor. Popul. Biol. 45 227–276. 0804.92025 10.1006/tpbi.1994.1013

4.

Chesson, P. (2000a). Mechanisms of maintenance of species diversity. Ann. Rev. Ecolog. Syst. 31 343–366.Chesson, P. (2000a). Mechanisms of maintenance of species diversity. Ann. Rev. Ecolog. Syst. 31 343–366.

5.

Chesson, P. (2000b). General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58 211–237. 1035.92042 10.1006/tpbi.2000.1486Chesson, P. (2000b). General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58 211–237. 1035.92042 10.1006/tpbi.2000.1486

6.

Chesson, P. L. and Warner, R. R. (1981). Environmental variability promotes coexistence in lottery competitive systems. Amer. Nat. 117 923–943.Chesson, P. L. and Warner, R. R. (1981). Environmental variability promotes coexistence in lottery competitive systems. Amer. Nat. 117 923–943.

7.

Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. J. Theoret. Biol. 12 119–129.Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. J. Theoret. Biol. 12 119–129.

8.

Drake, J. M. (2005). Population effects of increased climate variation. Proc. R. Soc. Lond., B Biol. Sci. 272 1823–1827.Drake, J. M. (2005). Population effects of increased climate variation. Proc. R. Soc. Lond., B Biol. Sci. 272 1823–1827.

9.

Ellner, S. (1987). Alternate plant life history strategies and coexistence in randomly varying environments. In Theory and Models in Vegetation Science 199–208. Springer, Berlin.Ellner, S. (1987). Alternate plant life history strategies and coexistence in randomly varying environments. In Theory and Models in Vegetation Science 199–208. Springer, Berlin.

10.

Härdle, W., Hall, P. and Ichimura, H. (1993). Optimal smoothing in single-index models. Ann. Statist. 21 157–178.Härdle, W., Hall, P. and Ichimura, H. (1993). Optimal smoothing in single-index models. Ann. Statist. 21 157–178.

11.

Hristache, M., Juditsky, A. and Spokoiny, V. (2001). Direct estimation of the index coefficient in a single-index model. Ann. Statist. 29 595–623. 1012.62043 10.1214/aos/1009210681Hristache, M., Juditsky, A. and Spokoiny, V. (2001). Direct estimation of the index coefficient in a single-index model. Ann. Statist. 29 595–623. 1012.62043 10.1214/aos/1009210681

12.

Hutchinson, G. E. (1961). The paradox of the plankton. Amer. Nat. 95 137–145.Hutchinson, G. E. (1961). The paradox of the plankton. Amer. Nat. 95 137–145.

13.

Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econometrics 58 71–120. 0816.62079 10.1016/0304-4076(93)90114-KIchimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econometrics 58 71–120. 0816.62079 10.1016/0304-4076(93)90114-K

14.

Koons, D. N., Metcalf, C. J. E. and Tuljapurkar, S. (2008). Evolution of delayed reproduction in uncertain environments: A life-history perspective. Amer. Nat. 172 797–805.Koons, D. N., Metcalf, C. J. E. and Tuljapurkar, S. (2008). Evolution of delayed reproduction in uncertain environments: A life-history perspective. Amer. Nat. 172 797–805.

15.

Koons, D. N., Pavard, S., Baudisch, A., Metcalf, J. E. et al. (2009). Is life-history buffering or lability adaptive in stochastic environments? Oikos 118 972–980.Koons, D. N., Pavard, S., Baudisch, A., Metcalf, J. E. et al. (2009). Is life-history buffering or lability adaptive in stochastic environments? Oikos 118 972–980.

16.

Lewontin, R. C. and Cohen, D. (1969). On population growth in a randomly varying environment. Proc. Natl. Acad. Sci. USA 62 1056–1060.Lewontin, R. C. and Cohen, D. (1969). On population growth in a randomly varying environment. Proc. Natl. Acad. Sci. USA 62 1056–1060.

17.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86 316–342. With discussion and a rejoinder by the author. 0742.62044 10.1080/01621459.1991.10475035Li, K.-C. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86 316–342. With discussion and a rejoinder by the author. 0742.62044 10.1080/01621459.1991.10475035

18.

Li, J., Huang, C. and Zhu, H. (2017). A functional varying-coefficient single-index model for functional response data. J. Amer. Statist. Assoc. 112 1169–1181. MR3735368 10.1080/01621459.2016.1195742Li, J., Huang, C. and Zhu, H. (2017). A functional varying-coefficient single-index model for functional response data. J. Amer. Statist. Assoc. 112 1169–1181. MR3735368 10.1080/01621459.2016.1195742

19.

Ma, S. (2016). Estimation and inference in functional single-index models. Ann. Inst. Statist. Math. 68 181–208. 1440.62132 10.1007/s10463-014-0488-3Ma, S. (2016). Estimation and inference in functional single-index models. Ann. Inst. Statist. Math. 68 181–208. 1440.62132 10.1007/s10463-014-0488-3

20.

Marron, J. S. and Zhang, J.-T. (2005). SiZer for smoothing splines. Comput. Statist. 20 481–502. 1091.62001 10.1007/BF02741310Marron, J. S. and Zhang, J.-T. (2005). SiZer for smoothing splines. Comput. Statist. 20 481–502. 1091.62001 10.1007/BF02741310

21.

Ramsay, J. O. (2006). Functional Data Analysis. Wiley, New York.Ramsay, J. O. (2006). Functional Data Analysis. Wiley, New York.

22.

Ramsay, J. O., Hooker, G. and Graves, S. (2009). Functional Data Analysis with R and MATLAB. Springer, Berlin. 1179.62006Ramsay, J. O., Hooker, G. and Graves, S. (2009). Functional Data Analysis with R and MATLAB. Springer, Berlin. 1179.62006

23.

Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics 12. Cambridge Univ. Press, Cambridge.Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics 12. Cambridge Univ. Press, Cambridge.

24.

Sonderegger, D. L., Wang, H., Clements, W. H. and Noon, B. R. (2009). Using SiZer to detect thresholds in ecological data. Front. Ecol. Environ. 7 190–195.Sonderegger, D. L., Wang, H., Clements, W. H. and Noon, B. R. (2009). Using SiZer to detect thresholds in ecological data. Front. Ecol. Environ. 7 190–195.

25.

Teller, B. J., Adler, P. B., Edwards, C. B., Hooker, G. and Ellner, S. P. (2016). Linking demography with drivers: Climate and competition. Methods Ecol. Evol. 7 171–183.Teller, B. J., Adler, P. B., Edwards, C. B., Hooker, G. and Ellner, S. P. (2016). Linking demography with drivers: Climate and competition. Methods Ecol. Evol. 7 171–183.

26.

Vasseur, D. A. and McCann, K. S. (2007). The Impact of Environmental Variability on Ecological Systems. Springer, Berlin.Vasseur, D. A. and McCann, K. S. (2007). The Impact of Environmental Variability on Ecological Systems. Springer, Berlin.

27.

Wood, S. N. (2000). Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Stat. Soc. Ser. B. Stat. Methodol. 62 413–428.Wood, S. N. (2000). Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Stat. Soc. Ser. B. Stat. Methodol. 62 413–428.

28.

Ye, Z. and Hooker, G. (2018). Local quadratic estimation of the curvature in a functional single index model. Preprint. Available at  arXiv:1803.093211803.09321Ye, Z. and Hooker, G. (2018). Local quadratic estimation of the curvature in a functional single index model. Preprint. Available at  arXiv:1803.093211803.09321

29.

Ye, Z., Hooker, G. and Ellner, S. P. (2020). Supplement to “The Jensen effect and functional single index models: Estimating the ecological implications of nonlinear reaction norms.”  https://doi.org/10.1214/20-AOAS1349SUPPA,  https://doi.org/10.1214/20-AOAS1349SUPPBYe, Z., Hooker, G. and Ellner, S. P. (2020). Supplement to “The Jensen effect and functional single index models: Estimating the ecological implications of nonlinear reaction norms.”  https://doi.org/10.1214/20-AOAS1349SUPPA,  https://doi.org/10.1214/20-AOAS1349SUPPB
Copyright © 2020 Institute of Mathematical Statistics
Zi Ye, Giles Hooker, and Stephen P. Ellner "The Jensen effect and functional single index models: Estimating the ecological implications of nonlinear reaction norms," The Annals of Applied Statistics 14(3), 1326-1341, (September 2020). https://doi.org/10.1214/20-AOAS1349
Received: 1 January 2020; Published: September 2020
Vol.14 • No. 3 • September 2020
Back to Top