Translator Disclaimer
December 2017 Modeling node incentives in directed networks
Deepayan Chakrabarti
Ann. Appl. Stat. 11(4): 2298-2331 (December 2017). DOI: 10.1214/17-AOAS1079

Abstract

Twitter is a popular medium for individuals to gather information and express opinions on topics of interest to them. By understanding who is interested in what topics, we can gauge the public mood, especially during periods of polarization such as elections. However, while the total volume of tweets may be huge, many people tweet rarely, and tweets are short and often noisy. Hence, directly inferring topics from tweets is both complicated and difficult to scale. Instead, the network structure of Twitter (who tweets at whom, who follows whom) can telegraph the interests of Twitter users. We propose the Producer-Consumer Model (PCM) to link latent topical interests of individuals to the directed structure of the network. A key component of PCM is the modeling of incentives of Twitter users. In particular, for a user to attract more followers and become popular, she must strive to be perceived as an expert on some topic. We use this to reduce the parameter space of PCM, greatly increasing its scalability. We apply PCM to track the evolution of Twitter topics during the Italian Elections of $2013$, and also to interpret those topics using hashtags. A secondary application of PCM to a citation network of machine learning papers is also shown. Extensive simulations and experiments with large real-world datasets demonstrate the accuracy and scalability of PCM.

Citation

Download Citation

Deepayan Chakrabarti. "Modeling node incentives in directed networks." Ann. Appl. Stat. 11 (4) 2298 - 2331, December 2017. https://doi.org/10.1214/17-AOAS1079

Information

Received: 1 May 2016; Revised: 1 May 2017; Published: December 2017
First available in Project Euclid: 28 December 2017

zbMATH: 1383.62331
MathSciNet: MR3743298
Digital Object Identifier: 10.1214/17-AOAS1079

Rights: Copyright © 2017 Institute of Mathematical Statistics

JOURNAL ARTICLE
34 PAGES


SHARE
Vol.11 • No. 4 • December 2017
Back to Top