Open Access
December 2016 Inferring rooted population trees using asymmetric neighbor joining
Yongliang Zhai, Alexandre Bouchard-Côté
Ann. Appl. Stat. 10(4): 2047-2074 (December 2016). DOI: 10.1214/16-AOAS964


We introduce a new inference method to estimate evolutionary distances for any two populations to their most recent common ancestral population using single-nucleotide polymorphism allele frequencies. Our model takes fixation into consideration, making it nonreversible, and guarantees that the distribution of reconstructed ancestral frequencies is contained on the interval $[0,1]$. To scale this method to large numbers of populations, we introduce the asymmetric neighbor joining algorithm, an efficient method for reconstructing rooted bifurcating nonclock trees. Asymmetric neighbor joining provides a scalable rooting method applicable to any nonreversible evolutionary modeling setups. We explore the statistical properties of asymmetric neighbor joining, and demonstrate its accuracy on synthetic data. We validate our method by reconstructing rooted phylogenetic trees from the Human Genome Diversity Panel data. Our results are obtained without using an outgroup, and are consistent with the prevalent recent single-origin model.


Download Citation

Yongliang Zhai. Alexandre Bouchard-Côté. "Inferring rooted population trees using asymmetric neighbor joining." Ann. Appl. Stat. 10 (4) 2047 - 2074, December 2016.


Received: 1 November 2015; Revised: 1 June 2016; Published: December 2016
First available in Project Euclid: 5 January 2017

zbMATH: 06688768
MathSciNet: MR3592048
Digital Object Identifier: 10.1214/16-AOAS964

Keywords: Asymmetric neighbor-joining algorithm , fixation and drift , Phylogenetics , population histories , rooted tree inference , single-nucleotide polymorphism

Rights: Copyright © 2016 Institute of Mathematical Statistics

Vol.10 • No. 4 • December 2016
Back to Top