In observational surveys, post-stratification is used to reduce bias resulting from differences between the survey population and the population under investigation. However, this can lead to inflated post-stratification weights and, therefore, appropriate methods are required to obtain less variable estimates. Proposed methods include collapsing post-strata, trimming post-stratification weights, generalized regression estimators (GREG) and weight smoothing models, the latter defined by random-effects models that induce shrinkage across post-stratum means. Here, we first describe the weight-smoothing model for prevalence estimation from binary survey outcomes in observational surveys. Second, we propose an extension of this method for trend estimation. And, third, a method is provided such that the GREG can be used for prevalence and trend estimation for observational surveys. Variance estimates of all methods are described. A simulation study is performed to compare the proposed methods with other established methods. The performance of the nonparametric GREG is consistent over all simulation conditions and therefore serves as a valuable solution for prevalence and trend estimation from observational surveys. The method is applied to the estimation of the prevalence and incidence trend of influenza-like illness using the 2010/2011 Great Influenza Survey in Flanders, Belgium.

## References

*BMC Infect. Dis.*

**14**. DOI:10.1186/1471-2334-14-232.Adler, A. J., Eames, K. T. D., Funk, S. and Edmunds, J. W. (2014). Incidence and risk factors for influenza-like-illness in the UK: Online surveillance using flusurvey.

*BMC Infect. Dis.*

**14**. DOI:10.1186/1471-2334-14-232.

*Surv. Methodol.*

**36**23–34.Chen, Q., Elliott, M. R. and Little, R. J. A. (2010). Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling.

*Surv. Methodol.*

**36**23–34.

*Biometric Society ENAR Meeting*, Richmond, VA.Cox, B. G. and McGrath, D. S. (1981). An examination of the effect of sample weight truncation on the mean squared error of survey estimates. In

*Biometric Society ENAR Meeting*, Richmond, VA.

*Vaccine*

**27**6353–6357.Friesema, I. H. M., Koppeschaar, C. E., Donker, G. A., Dijkstra, F., van Noort, S. P., Smallenburg, R., van der Hoek, W. and van der Sande, M. A. B. (2009). Internet-based monitoring of influenza-like illness in the general population: Experience of five influenza seasons in the Netherlands.

*Vaccine*

**27**6353–6357.

*Statist. Sci.*

**22**153–164. MR2408951 10.1214/088342306000000691 euclid.ss/1190905511 Gelman, A. (2007). Struggles with survey weighting and regression modeling.

*Statist. Sci.*

**22**153–164. MR2408951 10.1214/088342306000000691 euclid.ss/1190905511

*J. Amer. Statist. Assoc.*

**81**1058–1062. MR867632 0616.62012 10.1080/01621459.1986.10478373Ghosh, M. and Meeden, G. (1986). Empirical Bayes estimation in finite population sampling.

*J. Amer. Statist. Assoc.*

**81**1058–1062. MR867632 0616.62012 10.1080/01621459.1986.10478373

*Comput. Statist. Data Anal.*

**51**2720–2733. MR2338998González-Manteiga, W., Lombardía, M. J., Molina, I., Morales, D. and Santamaría, L. (2007). Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model.

*Comput. Statist. Data Anal.*

**51**2720–2733. MR2338998

*J. Amer. Statist. Assoc.*

**47**663–685. MR53460 0047.38301 10.1080/01621459.1952.10483446Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe.

*J. Amer. Statist. Assoc.*

**47**663–685. MR53460 0047.38301 10.1080/01621459.1952.10483446

*J. Amer. Statist. Assoc.*

**77**89–96. MR648029 0511.62016 10.1080/01621459.1982.10477770Isaki, C. T. and Fuller, W. A. (1982). Survey design under the regression superpopulation model.

*J. Amer. Statist. Assoc.*

**77**89–96. MR648029 0511.62016 10.1080/01621459.1982.10477770

*J. Amer. Statist. Assoc.*

**82**739–757. MR909979 0643.62018 10.1080/01621459.1987.10478490Laird, N. M. and Louis, T. A. (1987). Empirical Bayes confidence intervals based on bootstrap samples.

*J. Amer. Statist. Assoc.*

**82**739–757. MR909979 0643.62018 10.1080/01621459.1987.10478490

*J. Amer. Statist. Assoc.*

**99**546–556. MR2109316 1117.62389 10.1198/016214504000000467Little, R. J. (2004). To model or not to model? Competing modes of inference for finite population sampling.

*J. Amer. Statist. Assoc.*

**99**546–556. MR2109316 1117.62389 10.1198/016214504000000467

*BMC Public Health*

**6**. DOI:10.1186/1471-2458-6-242.Marquet, R. L., Bartelds, A. I. M., van Noort, S. P., Koppeschaar, C. E., Paget, J., Schellevis, F. G. and van der Zee, J. (2006). Internet-based monitoring of influenza-like illness (ILI) in the general population of the Netherlands during the 2003–2004 influenza season.

*BMC Public Health*

**6**. DOI:10.1186/1471-2458-6-242.

*Proceeds of the Survey Research Methods Section*225–230. Amer. Statist. Assoc., Alexandria, VA.Potter, F. (1990). A study to identify and trim extreme sample weights. In

*Proceeds of the Survey Research Methods Section*225–230. Amer. Statist. Assoc., Alexandria, VA.

*J. Amer. Statist. Assoc.*

**85**163–171. MR1137362 0719.62064 10.1080/01621459.1990.10475320Prasad, N. G. N. and Rao, J. N. K. (1990). The estimation of the mean squared error of small-area estimators.

*J. Amer. Statist. Assoc.*

**85**163–171. MR1137362 0719.62064 10.1080/01621459.1990.10475320

*PLoS ONE*

**8**e64156.Vandendijck, Y., Faes, C. and Hens, N. (2013). Eight years of the great influenza survey to monitor influenza-like illness in flanders.

*PLoS ONE*

**8**e64156.

*Surv. Methodol.*

**30**209–218.Zheng, H. and Little, R. J. A. (2004). Penalized spline nonparametric mixed models for inference about a finite population mean from two-stage samples.

*Surv. Methodol.*

**30**209–218.

*J. Off. Stat.*

**21**1–20.Zheng, H. and Little, R. J. A. (2005). Inference for the population total from probability-proportional-to-size samples based on predictions from a penalized spline nonparametric model.

*J. Off. Stat.*

**21**1–20.