Open Access
February, 1995 A Triangle Inequality for Covariances of Binary FKG Random Variables
J. Van Den Berg, A. Gandolfi
Ann. Appl. Probab. 5(1): 322-326 (February, 1995). DOI: 10.1214/aoap/1177004843

Abstract

For binary random variables $\sigma_1, \sigma_2, \ldots, \sigma_n$ that satisfy the well-known FKG condition, we show that the variances and covariances satisfy $\operatorname{Var}(\sigma_j) \operatorname{Cov}(\sigma_i, \sigma_k) \geq \operatorname{Cov}(\sigma_i, \sigma_j)\operatorname{Cov}(\sigma_j, \sigma_k),\quad 1 \leq i, j, k \leq n.$ This generalizes and improves a result by Graham for ferromagnetic Ising models with nonnegative external fields.

Citation

Download Citation

J. Van Den Berg. A. Gandolfi. "A Triangle Inequality for Covariances of Binary FKG Random Variables." Ann. Appl. Probab. 5 (1) 322 - 326, February, 1995. https://doi.org/10.1214/aoap/1177004843

Information

Published: February, 1995
First available in Project Euclid: 19 April 2007

zbMATH: 0841.60011
MathSciNet: MR1325056
Digital Object Identifier: 10.1214/aoap/1177004843

Subjects:
Primary: 60E15
Secondary: 60K35

Keywords: Correlation inequalities , correlation length , FKG inequality , Ising model

Rights: Copyright © 1995 Institute of Mathematical Statistics

Vol.5 • No. 1 • February, 1995
Back to Top