Abstract
We study asymptotics of the number of linear extensions of the random $G_{n,p}$ partial order, where $p$ is fixed and $n \rightarrow \infty$. In particular, it is shown that the distribution is asymptotically $\log$-normal.
Citation
Noga Alon. Bela Bollobas. Graham Brightwell. Svante Janson. "Linear Extensions of a Random Partial Order." Ann. Appl. Probab. 4 (1) 108 - 123, February, 1994. https://doi.org/10.1214/aoap/1177005202
Information