Open Access
December 2019 Poincaré and logarithmic Sobolev constants for metastable Markov chains via capacitary inequalities
André Schlichting, Martin Slowik
Ann. Appl. Probab. 29(6): 3438-3488 (December 2019). DOI: 10.1214/19-AAP1484
Abstract

We investigate the metastable behavior of reversible Markov chains on possibly countable infinite state spaces. Based on a new definition of metastable Markov processes, we compute precisely the mean transition time between metastable sets. Under additional size and regularity properties of metastable sets, we establish asymptotic sharp estimates on the Poincaré and logarithmic Sobolev constant. The main ingredient in the proof is a capacitary inequality along the lines of V. Maz’ya that relates regularity properties of harmonic functions and capacities. We exemplify the usefulness of this new definition in the context of the random field Curie–Weiss model, where metastability and the additional regularity assumptions are verifiable.

References

1.

[1] Amaro de Matos, J. M. G., Patrick, A. E. and Zagrebnov, V. A. (1992). Random infinite-volume Gibbs states for the Curie–Weiss random field Ising model. J. Stat. Phys. 66 139–164. MR1149483 0925.60127 10.1007/BF01060064[1] Amaro de Matos, J. M. G., Patrick, A. E. and Zagrebnov, V. A. (1992). Random infinite-volume Gibbs states for the Curie–Weiss random field Ising model. J. Stat. Phys. 66 139–164. MR1149483 0925.60127 10.1007/BF01060064

2.

[2] Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C. and Scheffer, G. (2000). Sur les Inégalités de Sobolev Logarithmiques. Panoramas et Synthèses [Panoramas and Syntheses] 10. Société Mathématique de France, Paris.[2] Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C. and Scheffer, G. (2000). Sur les Inégalités de Sobolev Logarithmiques. Panoramas et Synthèses [Panoramas and Syntheses] 10. Société Mathématique de France, Paris.

3.

[3] Bakry, D., Gentil, I. and Ledoux, M. (2014). Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 348. Springer, Cham. 1376.60002[3] Bakry, D., Gentil, I. and Ledoux, M. (2014). Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 348. Springer, Cham. 1376.60002

4.

[4] Barthe, F., Cattiaux, P. and Roberto, C. (2006). Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iberoam. 22 993–1067. MR2320410 1118.26014 10.4171/RMI/482 euclid.rmi/1169480039[4] Barthe, F., Cattiaux, P. and Roberto, C. (2006). Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iberoam. 22 993–1067. MR2320410 1118.26014 10.4171/RMI/482 euclid.rmi/1169480039

5.

[5] Barthe, F. and Roberto, C. (2003). Sobolev inequalities for probability measures on the real line. Studia Math. 159 481–497. 1072.60008 10.4064/sm159-3-9[5] Barthe, F. and Roberto, C. (2003). Sobolev inequalities for probability measures on the real line. Studia Math. 159 481–497. 1072.60008 10.4064/sm159-3-9

6.

[6] Beltrán, J. and Landim, C. (2015). A martingale approach to metastability. Probab. Theory Related Fields 161 267–307. 1338.60194 10.1007/s00440-014-0549-9[6] Beltrán, J. and Landim, C. (2015). A martingale approach to metastability. Probab. Theory Related Fields 161 267–307. 1338.60194 10.1007/s00440-014-0549-9

7.

[7] Berglund, N. and Dutercq, S. (2016). The Eyring–Kramers law for Markovian jump processes with symmetries. J. Theoret. Probab. 29 1240–1279. 1365.60074 10.1007/s10959-015-0617-9[7] Berglund, N. and Dutercq, S. (2016). The Eyring–Kramers law for Markovian jump processes with symmetries. J. Theoret. Probab. 29 1240–1279. 1365.60074 10.1007/s10959-015-0617-9

8.

[8] Bianchi, A., Bovier, A. and Ioffe, D. (2009). Sharp asymptotics for metastability in the random field Curie–Weiss model. Electron. J. Probab. 14 1541–1603. 1186.82069 10.1214/EJP.v14-673[8] Bianchi, A., Bovier, A. and Ioffe, D. (2009). Sharp asymptotics for metastability in the random field Curie–Weiss model. Electron. J. Probab. 14 1541–1603. 1186.82069 10.1214/EJP.v14-673

9.

[9] Bianchi, A., Bovier, A. and Ioffe, D. (2012). Pointwise estimates and exponential laws in metastable systems via coupling methods. Ann. Probab. 40 339–371. MR2917775 1237.82039 10.1214/10-AOP622 euclid.aop/1325605005[9] Bianchi, A., Bovier, A. and Ioffe, D. (2012). Pointwise estimates and exponential laws in metastable systems via coupling methods. Ann. Probab. 40 339–371. MR2917775 1237.82039 10.1214/10-AOP622 euclid.aop/1325605005

10.

[10] Bianchi, A. and Gaudillière, A. (2016). Metastable states, quasi-stationary distributions and soft measures. Stochastic Process. Appl. 126 1622–1680. 1348.82060 10.1016/j.spa.2015.11.015[10] Bianchi, A. and Gaudillière, A. (2016). Metastable states, quasi-stationary distributions and soft measures. Stochastic Process. Appl. 126 1622–1680. 1348.82060 10.1016/j.spa.2015.11.015

11.

[11] Bobkov, S. G. and Götze, F. (1999). Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 1–28. 0924.46027 10.1006/jfan.1998.3326[11] Bobkov, S. G. and Götze, F. (1999). Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 1–28. 0924.46027 10.1006/jfan.1998.3326

12.

[12] Bobkov, S. G. and Tetali, P. (2006). Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19 289–336. 1113.60072 10.1007/s10959-006-0016-3[12] Bobkov, S. G. and Tetali, P. (2006). Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19 289–336. 1113.60072 10.1007/s10959-006-0016-3

13.

[13] Bovier, A. (2004). Metastability and ageing in stochastic dynamics. In Dynamics and Randomness II. Nonlinear Phenom. Complex Systems 10 17–79. Kluwer Academic, Dordrecht. MR2153326 1085.82011[13] Bovier, A. (2004). Metastability and ageing in stochastic dynamics. In Dynamics and Randomness II. Nonlinear Phenom. Complex Systems 10 17–79. Kluwer Academic, Dordrecht. MR2153326 1085.82011

14.

[14] Bovier, A. (2006). Metastability: A potential theoretic approach. In International Congress of Mathematicians. Vol. III 499–518. Eur. Math. Soc., Zürich. 1099.60052[14] Bovier, A. (2006). Metastability: A potential theoretic approach. In International Congress of Mathematicians. Vol. III 499–518. Eur. Math. Soc., Zürich. 1099.60052

15.

[15] Bovier, A. and den Hollander, F. (2015). Metastability: A Potential-Theoretic Approach. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 351. Springer, Cham. 1339.60002[15] Bovier, A. and den Hollander, F. (2015). Metastability: A Potential-Theoretic Approach. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 351. Springer, Cham. 1339.60002

16.

[16] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2001). Metastability in stochastic dynamics of disordered mean-field models. Probab. Theory Related Fields 119 99–161. 1012.82015 10.1007/PL00012740[16] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2001). Metastability in stochastic dynamics of disordered mean-field models. Probab. Theory Related Fields 119 99–161. 1012.82015 10.1007/PL00012740

17.

[17] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2002). Metastability and low lying spectra in reversible Markov chains. Comm. Math. Phys. 228 219–255. 1010.60088 10.1007/s002200200609[17] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2002). Metastability and low lying spectra in reversible Markov chains. Comm. Math. Phys. 228 219–255. 1010.60088 10.1007/s002200200609

18.

[18] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2004). Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6 399–424. 1076.82045 10.4171/JEMS/14[18] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2004). Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6 399–424. 1076.82045 10.4171/JEMS/14

19.

[19] Bovier, A., Gayrard, V. and Klein, M. (2005). Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. (JEMS) 7 69–99. 1105.82025 10.4171/JEMS/22[19] Bovier, A., Gayrard, V. and Klein, M. (2005). Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. (JEMS) 7 69–99. 1105.82025 10.4171/JEMS/22

20.

[20] Bovier, A. and Manzo, F. (2002). Metastability in Glauber dynamics in the low-temperature limit: Beyond exponential asymptotics. J. Stat. Phys. 107 757–779. 1067.82041 10.1023/A:1014586130046[20] Bovier, A. and Manzo, F. (2002). Metastability in Glauber dynamics in the low-temperature limit: Beyond exponential asymptotics. J. Stat. Phys. 107 757–779. 1067.82041 10.1023/A:1014586130046

21.

[21] Burke, C. J. and Rosenblatt, M. (1958). A Markovian function of a Markov chain. Ann. Math. Stat. 29 1112–1122. MR101557 0100.34402 10.1214/aoms/1177706444 euclid.aoms/1177706444[21] Burke, C. J. and Rosenblatt, M. (1958). A Markovian function of a Markov chain. Ann. Math. Stat. 29 1112–1122. MR101557 0100.34402 10.1214/aoms/1177706444 euclid.aoms/1177706444

22.

[22] Cassandro, M., Galves, A., Olivieri, E. and Vares, M. E. (1984). Metastable behavior of stochastic dynamics: A pathwise approach. J. Stat. Phys. 35 603–634. 0591.60080 10.1007/BF01010826[22] Cassandro, M., Galves, A., Olivieri, E. and Vares, M. E. (1984). Metastable behavior of stochastic dynamics: A pathwise approach. J. Stat. Phys. 35 603–634. 0591.60080 10.1007/BF01010826

23.

[23] Cheeger, J. (1970). A lower bound for the smallest eigenvalue of the Laplacian. In Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969) 195–199. Princeton Univ. Press, Princeton, NJ.[23] Cheeger, J. (1970). A lower bound for the smallest eigenvalue of the Laplacian. In Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969) 195–199. Princeton Univ. Press, Princeton, NJ.

24.

[24] Chen, M.-F. (2005). Capacitary criteria for Poincaré-type inequalities. Potential Anal. 23 303–322. MR2139569 10.1007/s11118-005-2609-3[24] Chen, M.-F. (2005). Capacitary criteria for Poincaré-type inequalities. Potential Anal. 23 303–322. MR2139569 10.1007/s11118-005-2609-3

25.

[25] Chen, M.-F. (2005). Eigenvalues, Inequalities, and Ergodic Theory. Probability and Its Applications (New York). Springer, London.[25] Chen, M.-F. (2005). Eigenvalues, Inequalities, and Ergodic Theory. Probability and Its Applications (New York). Springer, London.

26.

[26] Diaconis, P. and Saloff-Coste, L. (1996). Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 695–750. 0867.60043 10.1214/aoap/1034968224 euclid.aoap/1034968224[26] Diaconis, P. and Saloff-Coste, L. (1996). Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 695–750. 0867.60043 10.1214/aoap/1034968224 euclid.aoap/1034968224

27.

[27] Diaconis, P. and Shahshahani, M. (1987). Time to reach stationarity in the Bernoulli–Laplace diffusion model. SIAM J. Math. Anal. 18 208–218. 0617.60009 10.1137/0518016[27] Diaconis, P. and Shahshahani, M. (1987). Time to reach stationarity in the Bernoulli–Laplace diffusion model. SIAM J. Math. Anal. 18 208–218. 0617.60009 10.1137/0518016

28.

[28] Freidlin, M. I. and Wentzell, A. D. (1998). Random Perturbations of Dynamical Systems, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 260. Springer, New York. 0922.60006[28] Freidlin, M. I. and Wentzell, A. D. (1998). Random Perturbations of Dynamical Systems, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 260. Springer, New York. 0922.60006

29.

[29] Helffer, B., Klein, M. and Nier, F. (2004). Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Mat. Contemp. 26 41–85. MR2111815 1079.58025[29] Helffer, B., Klein, M. and Nier, F. (2004). Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Mat. Contemp. 26 41–85. MR2111815 1079.58025

30.

[30] Higuchi, Y. and Yoshida, N. (1995). Analytic conditions and phase transition for ising models. Lecture notes in Japanese.[30] Higuchi, Y. and Yoshida, N. (1995). Analytic conditions and phase transition for ising models. Lecture notes in Japanese.

31.

[31] Holley, R. and Stroock, D. (1987). Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys. 46 1159–1194. 0682.60109 10.1007/BF01011161[31] Holley, R. and Stroock, D. (1987). Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys. 46 1159–1194. 0682.60109 10.1007/BF01011161

32.

[32] Lawler, G. F. and Sokal, A. D. (1988). Bounds on the $L^{2}$ spectrum for Markov chains and Markov processes: A generalization of Cheeger’s inequality. Trans. Amer. Math. Soc. 309 557–580. MR930082 0716.60073[32] Lawler, G. F. and Sokal, A. D. (1988). Bounds on the $L^{2}$ spectrum for Markov chains and Markov processes: A generalization of Cheeger’s inequality. Trans. Amer. Math. Soc. 309 557–580. MR930082 0716.60073

33.

[33] Lee, T.-Y. and Yau, H.-T. (1998). Logarithmic Sobolev inequality for some models of random walks. Ann. Probab. 26 1855–1873. 0943.60062 10.1214/aop/1022855885 euclid.aop/1022855885[33] Lee, T.-Y. and Yau, H.-T. (1998). Logarithmic Sobolev inequality for some models of random walks. Ann. Probab. 26 1855–1873. 0943.60062 10.1214/aop/1022855885 euclid.aop/1022855885

34.

[34] Levin, D. A., Luczak, M. J. and Peres, Y. (2010). Glauber dynamics for the mean-field Ising model: Cut-off, critical power law, and metastability. Probab. Theory Related Fields 146 223–265. MR2550363 1187.82076 10.1007/s00440-008-0189-z[34] Levin, D. A., Luczak, M. J. and Peres, Y. (2010). Glauber dynamics for the mean-field Ising model: Cut-off, critical power law, and metastability. Probab. Theory Related Fields 146 223–265. MR2550363 1187.82076 10.1007/s00440-008-0189-z

35.

[35] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. 1160.60001[35] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. 1160.60001

36.

[36] Madras, N. and Zheng, Z. (2003). On the swapping algorithm. Random Structures Algorithms 22 66–97. 1013.60074 10.1002/rsa.10066[36] Madras, N. and Zheng, Z. (2003). On the swapping algorithm. Random Structures Algorithms 22 66–97. 1013.60074 10.1002/rsa.10066

37.

[37] Mathieu, P. and Picco, P. (1998). Metastability and convergence to equilibrium for the random field Curie–Weiss model. J. Stat. Phys. 91 679–732. MR1632726 0921.60096 10.1023/A:1023085829152[37] Mathieu, P. and Picco, P. (1998). Metastability and convergence to equilibrium for the random field Curie–Weiss model. J. Stat. Phys. 91 679–732. MR1632726 0921.60096 10.1023/A:1023085829152

38.

[38] Maz’ja, V. G. (1972). Certain integral inequalities for functions of several variables. In Problems of Mathematical Analysis, No. 3: Integral and Differential Operators, Differential Equations (Russian) 33–68. Izdat. Leningrad. Univ., Leningrad. MR0344880[38] Maz’ja, V. G. (1972). Certain integral inequalities for functions of several variables. In Problems of Mathematical Analysis, No. 3: Integral and Differential Operators, Differential Equations (Russian) 33–68. Izdat. Leningrad. Univ., Leningrad. MR0344880

39.

[39] Maz’ya, V. (2011). Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 342. Springer, Heidelberg.[39] Maz’ya, V. (2011). Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 342. Springer, Heidelberg.

40.

[40] Menz, G. and Schlichting, A. (2014). Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape. Ann. Probab. 42 1809–1884. 1327.60156 10.1214/14-AOP908 euclid.aop/1409319468[40] Menz, G. and Schlichting, A. (2014). Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape. Ann. Probab. 42 1809–1884. 1327.60156 10.1214/14-AOP908 euclid.aop/1409319468

41.

[41] Miclo, L. (1999). An example of application of discrete Hardy’s inequalities. Markov Process. Related Fields 5 319–330. MR1710983 0942.60081[41] Miclo, L. (1999). An example of application of discrete Hardy’s inequalities. Markov Process. Related Fields 5 319–330. MR1710983 0942.60081

42.

[42] Muckenhoupt, B. (1972). Hardy’s inequality with weights. Studia Math. 44 31–38. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I.[42] Muckenhoupt, B. (1972). Hardy’s inequality with weights. Studia Math. 44 31–38. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I.

43.

[43] Olivieri, E. and Vares, M. E. (2005). Large Deviations and Metastability. Encyclopedia of Mathematics and Its Applications 100. Cambridge Univ. Press, Cambridge.[43] Olivieri, E. and Vares, M. E. (2005). Large Deviations and Metastability. Encyclopedia of Mathematics and Its Applications 100. Cambridge Univ. Press, Cambridge.

44.

[44] Rao, M. M. and Ren, Z. D. (2002). Applications of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics 250. Dekker, New York. 0997.46027[44] Rao, M. M. and Ren, Z. D. (2002). Applications of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics 250. Dekker, New York. 0997.46027

45.

[45] Salinas, S. R. and Wreszinski, W. F. (1985). On the mean-field Ising model in a random external field. J. Stat. Phys. 41 299–313. MR813022 10.1007/BF01020615[45] Salinas, S. R. and Wreszinski, W. F. (1985). On the mean-field Ising model in a random external field. J. Stat. Phys. 41 299–313. MR813022 10.1007/BF01020615

46.

[46] Schlichting, A. (2012). The Eyring–Kramers formula for Poincaré and logarithmic Sobolev inequalities. Ph.D. thesis, Universität Leipzig.[46] Schlichting, A. (2012). The Eyring–Kramers formula for Poincaré and logarithmic Sobolev inequalities. Ph.D. thesis, Universität Leipzig.

47.

[47] Slowik, M. (2012). Contributions to the potential theoretic approach to metastability with applications to the random field Curie-Weiss-Potts model. Ph.D. thesis, Technische Univ. Berlin.[47] Slowik, M. (2012). Contributions to the potential theoretic approach to metastability with applications to the random field Curie-Weiss-Potts model. Ph.D. thesis, Technische Univ. Berlin.

48.

[48] Sugiura, M. (1995). Metastable behaviors of diffusion processes with small parameter. J. Math. Soc. Japan 47 755–788. MR1348758 0845.60081 10.2969/jmsj/04740755 euclid.jmsj/1226598765[48] Sugiura, M. (1995). Metastable behaviors of diffusion processes with small parameter. J. Math. Soc. Japan 47 755–788. MR1348758 0845.60081 10.2969/jmsj/04740755 euclid.jmsj/1226598765
Copyright © 2019 Institute of Mathematical Statistics
André Schlichting and Martin Slowik "Poincaré and logarithmic Sobolev constants for metastable Markov chains via capacitary inequalities," The Annals of Applied Probability 29(6), 3438-3488, (December 2019). https://doi.org/10.1214/19-AAP1484
Received: 1 May 2017; Published: December 2019
Vol.29 • No. 6 • December 2019
Back to Top