Abstract
The classical Skorokhod embedding problem for a Brownian motion $W$ asks to find a stopping time $\tau $ so that $W_{\tau }$ is distributed according to a prescribed probability distribution $\mu $. Many solutions have been proposed during the past 50 years and applications in different fields emerged. This article deals with a generalized Skorokhod embedding problem (SEP): Let $X$ be a Markov process with initial marginal distribution $\mu_{0}$ and let $\mu_{1}$ be a probability measure. The task is to find a stopping time $\tau $ such that $X_{\tau }$ is distributed according to $\mu_{1}$. More precisely, we study the question of deciding if a finite mean solution to the SEP can exist for given $\mu_{0}$, $\mu_{1}$ and the task of giving a solution which is as explicit as possible.
If $\mu_{0}$ and $\mu_{1}$ have positive densities $h_{0}$ and $h_{1}$ and the generator $\mathcal{A}$ of $X$ has a formal adjoint operator $\mathcal{A}^{*}$, then we propose necessary and sufficient conditions for the existence of an embedding in terms of the Poisson equation $\mathcal{A}^{*}H=h_{1}-h_{0}$ and give a fairly explicit construction of the stopping time using the solution of the Poisson equation. For the class of Lévy processes, we carry out the procedure and extend a result of Bertoin and Le Jan to Lévy processes without local times.
Citation
Leif Döring. Lukas Gonon. David J. Prömel. Oleg Reichmann. "On Skorokhod embeddings and Poisson equations." Ann. Appl. Probab. 29 (4) 2302 - 2337, August 2019. https://doi.org/10.1214/18-AAP1454
Information