Open Access
June 2017 On the distribution of the largest real eigenvalue for the real Ginibre ensemble
Mihail Poplavskyi, Roger Tribe, Oleg Zaboronski
Ann. Appl. Probab. 27(3): 1395-1413 (June 2017). DOI: 10.1214/16-AAP1233

Abstract

Let $\sqrt{N}+\lambda_{\max}$ be the largest real eigenvalue of a random $N\times N$ matrix with independent $N(0,1)$ entries (the “real Ginibre matrix”). We study the large deviations behaviour of the limiting $N\rightarrow \infty $ distribution $\mathbb{P}[\lambda_{\max}<t]$ of the shifted maximal real eigenvalue $\lambda_{\max}$. In particular, we prove that the right tail of this distribution is Gaussian: for $t>0$, \begin{equation*}\mathbb{P}[\lambda_{\max}<t]=1-\frac{1}{4}\operatorname{erfc}(t)+O(e^{-2t^{2}}).\end{equation*} This is a rigorous confirmation of the corresponding result of [Phys. Rev. Lett. 99 (2007) 050603]. We also prove that the left tail is exponential, with correct asymptotics up to $O(1)$: for $t<0$, \begin{equation*}\mathbb{P}[\lambda_{\max}<t]=e^{\frac{1}{2\sqrt{2\pi }}\zeta (\frac{3}{2})t+O(1)},\end{equation*} where $\zeta $ is the Riemann zeta-function.

Our results have implications for interacting particle systems. The edge scaling limit of the law of real eigenvalues for the real Ginibre ensemble is a rescaling of a fixed time distribution of annihilating Brownian motions (ABMs) with the step initial condition; see [Garrod, Poplavskyi, Tribe and Zaboronski (2015)]. Therefore, the tail behaviour of the distribution of $X_{s}^{(\max)}$—the position of the rightmost annihilating particle at fixed time $s>0$—can be read off from the corresponding answers for $\lambda_{\max}$ using $X_{s}^{(\max)}\stackrel{D}{=}\sqrt{4s}\lambda_{\max}$.

Citation

Download Citation

Mihail Poplavskyi. Roger Tribe. Oleg Zaboronski. "On the distribution of the largest real eigenvalue for the real Ginibre ensemble." Ann. Appl. Probab. 27 (3) 1395 - 1413, June 2017. https://doi.org/10.1214/16-AAP1233

Information

Received: 1 April 2016; Revised: 1 July 2016; Published: June 2017
First available in Project Euclid: 19 July 2017

zbMATH: 1375.60023
MathSciNet: MR3678474
Digital Object Identifier: 10.1214/16-AAP1233

Subjects:
Primary: 60B20
Secondary: 60F10

Keywords: Fredholm determinant , Real Ginibre ensemble

Rights: Copyright © 2017 Institute of Mathematical Statistics

Vol.27 • No. 3 • June 2017
Back to Top