Open Access
June 2017 Mesoscopic eigenvalue statistics of Wigner matrices
Yukun He, Antti Knowles
Ann. Appl. Probab. 27(3): 1510-1550 (June 2017). DOI: 10.1214/16-AAP1237

Abstract

We prove that the linear statistics of the eigenvalues of a Wigner matrix converge to a universal Gaussian process on all mesoscopic spectral scales, that is, scales larger than the typical eigenvalue spacing and smaller than the global extent of the spectrum.

Citation

Download Citation

Yukun He. Antti Knowles. "Mesoscopic eigenvalue statistics of Wigner matrices." Ann. Appl. Probab. 27 (3) 1510 - 1550, June 2017. https://doi.org/10.1214/16-AAP1237

Information

Received: 1 March 2016; Published: June 2017
First available in Project Euclid: 19 July 2017

zbMATH: 1375.15055
MathSciNet: MR3678478
Digital Object Identifier: 10.1214/16-AAP1237

Subjects:
Primary: 15B52
Secondary: 60B20

Keywords: linear statistics , mesoscopic eigenvalue distribution , Universality , Wigner matrices

Rights: Copyright © 2017 Institute of Mathematical Statistics

Vol.27 • No. 3 • June 2017
Back to Top