Abstract
We consider sample covariance matrices of the form $\mathcal{Q}=(\Sigma^{1/2}X)(\Sigma^{1/2}X)^{*}$, where the sample $X$ is an $M\times N$ random matrix whose entries are real independent random variables with variance $1/N$ and where $\Sigma$ is an $M\times M$ positive-definite deterministic matrix. We analyze the asymptotic fluctuations of the largest rescaled eigenvalue of $\mathcal{Q}$ when both $M$ and $N$ tend to infinity with $N/M\to d\in(0,\infty)$. For a large class of populations $\Sigma$ in the sub-critical regime, we show that the distribution of the largest rescaled eigenvalue of $\mathcal{Q}$ is given by the type-1 Tracy–Widom distribution under the additional assumptions that (1) either the entries of $X$ are i.i.d. Gaussians or (2) that $\Sigma$ is diagonal and that the entries of $X$ have a sub-exponential decay.
Citation
Ji Oon Lee. Kevin Schnelli. "Tracy–Widom distribution for the largest eigenvalue of real sample covariance matrices with general population." Ann. Appl. Probab. 26 (6) 3786 - 3839, December 2016. https://doi.org/10.1214/16-AAP1193
Information