Open Access
August 2016 Gaussian approximation of nonlinear Hawkes processes
Giovanni Luca Torrisi
Ann. Appl. Probab. 26(4): 2106-2140 (August 2016). DOI: 10.1214/15-AAP1141

Abstract

We give a general Gaussian bound for the first chaos (or innovation) of point processes with stochastic intensity constructed by embedding in a bivariate Poisson process. We apply the general result to nonlinear Hawkes processes, providing quantitative central limit theorems.

Citation

Download Citation

Giovanni Luca Torrisi. "Gaussian approximation of nonlinear Hawkes processes." Ann. Appl. Probab. 26 (4) 2106 - 2140, August 2016. https://doi.org/10.1214/15-AAP1141

Information

Received: 1 October 2014; Revised: 1 June 2015; Published: August 2016
First available in Project Euclid: 1 September 2016

zbMATH: 1352.60070
MathSciNet: MR3543891
Digital Object Identifier: 10.1214/15-AAP1141

Subjects:
Primary: 60F05 , 60G55

Keywords: Clark–Ocone formula , Gaussian approximation , Hawkes process , Malliavin’s calculus , Poisson process , Stein’s method , Stochastic intensity

Rights: Copyright © 2016 Institute of Mathematical Statistics

Vol.26 • No. 4 • August 2016
Back to Top