Translator Disclaimer
August 2015 An integral equation for Root’s barrier and the generation of Brownian increments
Paul Gassiat, Aleksandar Mijatović, Harald Oberhauser
Ann. Appl. Probab. 25(4): 2039-2065 (August 2015). DOI: 10.1214/14-AAP1042

Abstract

We derive a nonlinear integral equation to calculate Root’s solution of the Skorokhod embedding problem for atom-free target measures. We then use this to efficiently generate bounded time–space increments of Brownian motion and give a parabolic version of Muller’s classic “Random walk over spheres” algorithm.

Citation

Download Citation

Paul Gassiat. Aleksandar Mijatović. Harald Oberhauser. "An integral equation for Root’s barrier and the generation of Brownian increments." Ann. Appl. Probab. 25 (4) 2039 - 2065, August 2015. https://doi.org/10.1214/14-AAP1042

Information

Received: 1 October 2013; Revised: 1 April 2014; Published: August 2015
First available in Project Euclid: 21 May 2015

zbMATH: 1328.60103
MathSciNet: MR3349001
Digital Object Identifier: 10.1214/14-AAP1042

Subjects:
Primary: 45Gxx, 60G40, 65C05
Secondary: 65C30, 65C40

Rights: Copyright © 2015 Institute of Mathematical Statistics

JOURNAL ARTICLE
27 PAGES


SHARE
Vol.25 • No. 4 • August 2015
Back to Top