Open Access
December 2014 First-order global asymptotics for confined particles with singular pair repulsion
Djalil Chafaï, Nathael Gozlan, Pierre-André Zitt
Ann. Appl. Probab. 24(6): 2371-2413 (December 2014). DOI: 10.1214/13-AAP980
Abstract

We study a physical system of $N$ interacting particles in $\mathbb{R}^{d}$, $d\geq1$, subject to pair repulsion and confined by an external field. We establish a large deviations principle for their empirical distribution as $N$ tends to infinity. In the case of Riesz interaction, including Coulomb interaction in arbitrary dimension $d>2$, the rate function is strictly convex and admits a unique minimum, the equilibrium measure, characterized via its potential. It follows that almost surely, the empirical distribution of the particles tends to this equilibrium measure as $N$ tends to infinity. In the more specific case of Coulomb interaction in dimension $d>2$, and when the external field is a convex or increasing function of the radius, then the equilibrium measure is supported in a ring. With a quadratic external field, the equilibrium measure is uniform on a ball.

References

1.

[1] Aizenman, M. and Martin, P. A. (1980/81). Structure of Gibbs states of one-dimensional Coulomb systems. Comm. Math. Phys. 78 99–116. MR597033 10.1007/BF01941972 euclid.cmp/1103908504 [1] Aizenman, M. and Martin, P. A. (1980/81). Structure of Gibbs states of one-dimensional Coulomb systems. Comm. Math. Phys. 78 99–116. MR597033 10.1007/BF01941972 euclid.cmp/1103908504

2.

[2] Ameur, Y., Hedenmalm, H. and Makarov, N. (2011). Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159 31–81. MR2817648 10.1215/00127094-1384782 euclid.dmj/1310416362 [2] Ameur, Y., Hedenmalm, H. and Makarov, N. (2011). Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159 31–81. MR2817648 10.1215/00127094-1384782 euclid.dmj/1310416362

3.

[3] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge. MR2760897[3] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge. MR2760897

4.

[4] Ben Arous, G. and Guionnet, A. (1997). Large deviations for Wigner’s law and Voiculescu’s noncommutative entropy. Probab. Theory Related Fields 108 517–542. MR1465640 10.1007/s004400050119[4] Ben Arous, G. and Guionnet, A. (1997). Large deviations for Wigner’s law and Voiculescu’s noncommutative entropy. Probab. Theory Related Fields 108 517–542. MR1465640 10.1007/s004400050119

5.

[5] Ben Arous, G. and Zeitouni, O. (1998). Large deviations from the circular law. ESAIM Probab. Stat. 2 123–134 (electronic). MR1660943 10.1051/ps:1998104[5] Ben Arous, G. and Zeitouni, O. (1998). Large deviations from the circular law. ESAIM Probab. Stat. 2 123–134 (electronic). MR1660943 10.1051/ps:1998104

6.

[6] Berg, C., Christensen, J. P. R. and Ressel, P. (1984). Harmonic Analysis on Semigroups. Graduate Texts in Mathematics 100. Springer, New York. Theory of positive definite and related functions. MR747302[6] Berg, C., Christensen, J. P. R. and Ressel, P. (1984). Harmonic Analysis on Semigroups. Graduate Texts in Mathematics 100. Springer, New York. Theory of positive definite and related functions. MR747302

7.

[7] Berman, R. J. (2014). Determinantal point processes and fermions on complex manifolds: Large deviations and bosonization. Comm. Math. Phys. 327 1–47. MR3177931 10.1007/s00220-014-1891-6[7] Berman, R. J. (2014). Determinantal point processes and fermions on complex manifolds: Large deviations and bosonization. Comm. Math. Phys. 327 1–47. MR3177931 10.1007/s00220-014-1891-6

8.

[8] Bleher, P. M. and Kuijlaars, A. B. J. (2012). Orthogonal polynomials in the normal matrix model with a cubic potential. Adv. Math. 230 1272–1321. MR2921180 10.1016/j.aim.2012.03.021[8] Bleher, P. M. and Kuijlaars, A. B. J. (2012). Orthogonal polynomials in the normal matrix model with a cubic potential. Adv. Math. 230 1272–1321. MR2921180 10.1016/j.aim.2012.03.021

9.

[9] Bloom, T. (2011). Voiculescu’s entropy and potential theory. Ann. Fac. Sci. Toulouse Math. (6) 20 57–69. MR2858167 10.5802/afst.1305[9] Bloom, T. (2011). Voiculescu’s entropy and potential theory. Ann. Fac. Sci. Toulouse Math. (6) 20 57–69. MR2858167 10.5802/afst.1305

10.

[10] Bodineau, T. and Guionnet, A. (1999). About the stationary states of vortex systems. Ann. Inst. Henri Poincaré Probab. Stat. 35 205–237. MR1678526 10.1016/S0246-0203(99)80011-9[10] Bodineau, T. and Guionnet, A. (1999). About the stationary states of vortex systems. Ann. Inst. Henri Poincaré Probab. Stat. 35 205–237. MR1678526 10.1016/S0246-0203(99)80011-9

11.

[11] Bordenave, C. and Chafaï, D. (2012). Around the circular law. Probab. Surv. 9 1–89. MR2908617 10.1214/11-PS183 euclid.ps/1325604980 [11] Bordenave, C. and Chafaï, D. (2012). Around the circular law. Probab. Surv. 9 1–89. MR2908617 10.1214/11-PS183 euclid.ps/1325604980

12.

[12] Borodin, A. and Serfaty, S. (2013). Renormalized energy concentration in random matrices. Comm. Math. Phys. 320 199–244. MR3046995 10.1007/s00220-013-1716-z[12] Borodin, A. and Serfaty, S. (2013). Renormalized energy concentration in random matrices. Comm. Math. Phys. 320 199–244. MR3046995 10.1007/s00220-013-1716-z

13.

[13] Brascamp, H. J. and Lieb, E. H. (1974). Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma. In Functional Integration and Its Applications. Proceedings of the International Conference Held in London in April 1974 (A. M. Arthur, ed.) 1–14. Clarendon, Oxford.[13] Brascamp, H. J. and Lieb, E. H. (1974). Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma. In Functional Integration and Its Applications. Proceedings of the International Conference Held in London in April 1974 (A. M. Arthur, ed.) 1–14. Clarendon, Oxford.

14.

[14] Caglioti, E., Lions, P.-L., Marchioro, C. and Pulvirenti, M. (1992). A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. Comm. Math. Phys. 143 501–525. MR1145596 10.1007/BF02099262 euclid.cmp/1104249078 [14] Caglioti, E., Lions, P.-L., Marchioro, C. and Pulvirenti, M. (1992). A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. Comm. Math. Phys. 143 501–525. MR1145596 10.1007/BF02099262 euclid.cmp/1104249078

15.

[15] Caglioti, E., Lions, P.-L., Marchioro, C. and Pulvirenti, M. (1995). A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. II. Comm. Math. Phys. 174 229–260. MR1362165 10.1007/BF02099602 euclid.cmp/1104275293 [15] Caglioti, E., Lions, P.-L., Marchioro, C. and Pulvirenti, M. (1995). A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. II. Comm. Math. Phys. 174 229–260. MR1362165 10.1007/BF02099602 euclid.cmp/1104275293

16.

[16] Cépa, E. and Lépingle, D. (1997). Diffusing particles with electrostatic repulsion. Probab. Theory Related Fields 107 429–449. MR1440140 10.1007/s004400050092[16] Cépa, E. and Lépingle, D. (1997). Diffusing particles with electrostatic repulsion. Probab. Theory Related Fields 107 429–449. MR1440140 10.1007/s004400050092

17.

[17] Chafaï, D. and Péché, S. (2013). A note on the second order universality at the edge of Coulomb gases on the plane. Preprint. Available at  arXiv:1310.07271310.0727[17] Chafaï, D. and Péché, S. (2013). A note on the second order universality at the edge of Coulomb gases on the plane. Preprint. Available at  arXiv:1310.07271310.0727

18.

[18] Chybiryakov, O., Demni, N., Rösler, M., Voit, M. and Yor, M. (2008). Harmonic & Stochastic Analysis of Dunkl Processes. Hermann, Paris.[18] Chybiryakov, O., Demni, N., Rösler, M., Voit, M. and Yor, M. (2008). Harmonic & Stochastic Analysis of Dunkl Processes. Hermann, Paris.

19.

[19] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Springer, Berlin. Corrected reprint of the second (1998) edition. MR2571413[19] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Springer, Berlin. Corrected reprint of the second (1998) edition. MR2571413

20.

[20] Dragnev, P. D. and Saff, E. B. (2007). Riesz spherical potentials with external fields and minimal energy points separation. Potential Anal. 26 139–162. MR2276529 10.1007/s11118-006-9032-2[20] Dragnev, P. D. and Saff, E. B. (2007). Riesz spherical potentials with external fields and minimal energy points separation. Potential Anal. 26 139–162. MR2276529 10.1007/s11118-006-9032-2

21.

[21] Dunkl, C. F. and Xu, Y. (2001). Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications 81. Cambridge Univ. Press, Cambridge. MR1827871[21] Dunkl, C. F. and Xu, Y. (2001). Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications 81. Cambridge Univ. Press, Cambridge. MR1827871

22.

[22] Edwards, S. F. and Lenard, A. (1962). Exact statistical mechanics of a one-dimensional system with Coulomb forces. II. The method of functional integration. J. Math. Phys. 3 778–792. MR147214 10.1063/1.1724281[22] Edwards, S. F. and Lenard, A. (1962). Exact statistical mechanics of a one-dimensional system with Coulomb forces. II. The method of functional integration. J. Math. Phys. 3 778–792. MR147214 10.1063/1.1724281

23.

[23] Fontbona, J. (2004). Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion. Stochastic Process. Appl. 112 119–144. MR2062570 10.1016/j.spa.2004.01.008[23] Fontbona, J. (2004). Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion. Stochastic Process. Appl. 112 119–144. MR2062570 10.1016/j.spa.2004.01.008

24.

[24] Forrester, P. J. (2010). Log-gases and Random Matrices. London Mathematical Society Monographs Series 34. Princeton Univ. Press, Princeton, NJ. MR2641363[24] Forrester, P. J. (2010). Log-gases and Random Matrices. London Mathematical Society Monographs Series 34. Princeton Univ. Press, Princeton, NJ. MR2641363

25.

[25] Fortet, R. and Mourier, E. (1953). Convergence de la répartition empirique vers la répartition théorique. Ann. Sci. Ec. Norm. Super. (3) 70 267–285. MR61325[25] Fortet, R. and Mourier, E. (1953). Convergence de la répartition empirique vers la répartition théorique. Ann. Sci. Ec. Norm. Super. (3) 70 267–285. MR61325

26.

[26] Frostman, O. (1935). Potentiel d’Équilibre et Capacité des Ensembles. Ph.D. thesis, Faculté des sciences de Lund.[26] Frostman, O. (1935). Potentiel d’Équilibre et Capacité des Ensembles. Ph.D. thesis, Faculté des sciences de Lund.

27.

[27] Götze, F. and Venker, M. (2012). Local universality of repulsive particle systems and random matrices. Preprint. Available at  arXiv:1205.06711205.0671[27] Götze, F. and Venker, M. (2012). Local universality of repulsive particle systems and random matrices. Preprint. Available at  arXiv:1205.06711205.0671

28.

[28] Hardy, A. (2012). A note on large deviations for 2D Coulomb gas with weakly confining potential. Electron. Commun. Probab. 17 no. 19, 12. MR2926763[28] Hardy, A. (2012). A note on large deviations for 2D Coulomb gas with weakly confining potential. Electron. Commun. Probab. 17 no. 19, 12. MR2926763

29.

[29] Helms, L. L. (2009). Potential Theory. Universitext. Springer, London. MR2526019[29] Helms, L. L. (2009). Potential Theory. Universitext. Springer, London. MR2526019

30.

[30] Hiai, F. and Petz, D. (2000). The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs 77. Amer. Math. Soc., Providence, RI. MR1746976[30] Hiai, F. and Petz, D. (2000). The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs 77. Amer. Math. Soc., Providence, RI. MR1746976

31.

[31] Hough, J. B., Krishnapur, M., Peres, Y. and Virág, B. (2006). Determinantal processes and independence. Probab. Surv. 3 206–229. MR2216966 10.1214/154957806000000078 euclid.ps/1146832696 [31] Hough, J. B., Krishnapur, M., Peres, Y. and Virág, B. (2006). Determinantal processes and independence. Probab. Surv. 3 206–229. MR2216966 10.1214/154957806000000078 euclid.ps/1146832696

32.

[32] Kiessling, M. K.-H. (1993). Statistical mechanics of classical particles with logarithmic interactions. Comm. Pure Appl. Math. 46 27–56. MR1193342 10.1002/cpa.3160460103[32] Kiessling, M. K.-H. (1993). Statistical mechanics of classical particles with logarithmic interactions. Comm. Pure Appl. Math. 46 27–56. MR1193342 10.1002/cpa.3160460103

33.

[33] Kiessling, M. K.-H. and Spohn, H. (1999). A note on the eigenvalue density of random matrices. Comm. Math. Phys. 199 683–695. MR1669669 10.1007/s002200050516[33] Kiessling, M. K.-H. and Spohn, H. (1999). A note on the eigenvalue density of random matrices. Comm. Math. Phys. 199 683–695. MR1669669 10.1007/s002200050516

34.

[34] Koldobsky, A. (2005). Fourier Analysis in Convex Geometry. Mathematical Surveys and Monographs 116. Amer. Math. Soc., Providence, RI. MR2132704[34] Koldobsky, A. (2005). Fourier Analysis in Convex Geometry. Mathematical Surveys and Monographs 116. Amer. Math. Soc., Providence, RI. MR2132704

35.

[35] Landkof, N. S. (1972). Foundations of Modern Potential Theory. Springer, New York. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180. MR350027[35] Landkof, N. S. (1972). Foundations of Modern Potential Theory. Springer, New York. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180. MR350027

36.

[36] Lenard, A. (1961). Exact statistical mechanics of a one-dimensional system with Coulomb forces. J. Math. Phys. 2 682–693. MR129874 10.1063/1.1703757[36] Lenard, A. (1961). Exact statistical mechanics of a one-dimensional system with Coulomb forces. J. Math. Phys. 2 682–693. MR129874 10.1063/1.1703757

37.

[37] Lenard, A. (1963). Exact statistical mechanics of a one-dimensional system with Coulomb forces. III. Statistics of the electric field. J. Math. Phys. 4 533–543. MR148411 10.1063/1.1703988[37] Lenard, A. (1963). Exact statistical mechanics of a one-dimensional system with Coulomb forces. III. Statistics of the electric field. J. Math. Phys. 4 533–543. MR148411 10.1063/1.1703988

38.

[38] López García, A. (2010). Greedy energy points with external fields. In Recent Trends in Orthogonal Polynomials and Approximation Theory. Contemp. Math. 507 189–207. Amer. Math. Soc., Providence, RI. MR2647570 10.1090/conm/507/09960[38] López García, A. (2010). Greedy energy points with external fields. In Recent Trends in Orthogonal Polynomials and Approximation Theory. Contemp. Math. 507 189–207. Amer. Math. Soc., Providence, RI. MR2647570 10.1090/conm/507/09960

39.

[39] Mattner, L. (1997). Strict definiteness of integrals via complete monotonicity of derivatives. Trans. Amer. Math. Soc. 349 3321–3342. MR1422615 10.1090/S0002-9947-97-01966-1[39] Mattner, L. (1997). Strict definiteness of integrals via complete monotonicity of derivatives. Trans. Amer. Math. Soc. 349 3321–3342. MR1422615 10.1090/S0002-9947-97-01966-1

40.

[40] Messer, J. and Spohn, H. (1982). Statistical mechanics of the isothermal Lane–Emden equation. J. Stat. Phys. 29 561–578. MR704588 10.1007/BF01342187[40] Messer, J. and Spohn, H. (1982). Statistical mechanics of the isothermal Lane–Emden equation. J. Stat. Phys. 29 561–578. MR704588 10.1007/BF01342187

41.

[41] Osada, H. (2013). Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. Ann. Probab. 41 1–49. MR3059192 10.1214/11-AOP736 euclid.aop/1358951980 [41] Osada, H. (2013). Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. Ann. Probab. 41 1–49. MR3059192 10.1214/11-AOP736 euclid.aop/1358951980

42.

[42] Osada, H. (2013). Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials II: Airy random point field. Stochastic Process. Appl. 123 813–838. MR3005007 10.1016/j.spa.2012.11.002[42] Osada, H. (2013). Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials II: Airy random point field. Stochastic Process. Appl. 123 813–838. MR3005007 10.1016/j.spa.2012.11.002

43.

[43] Petz, D. and Hiai, F. (1998). Logarithmic energy as an entropy functional. In Advances in Differential Equations and Mathematical Physics (Atlanta, GA, 1997). Contemp. Math. 217 205–221. Amer. Math. Soc., Providence, RI. MR1606719 10.1090/conm/217/02991[43] Petz, D. and Hiai, F. (1998). Logarithmic energy as an entropy functional. In Advances in Differential Equations and Mathematical Physics (Atlanta, GA, 1997). Contemp. Math. 217 205–221. Amer. Math. Soc., Providence, RI. MR1606719 10.1090/conm/217/02991

44.

[44] Rachev, S. T. and Rüschendorf, L. (1998). Mass Transportation Problems. Vol. I. Springer, New York. MR1619170[44] Rachev, S. T. and Rüschendorf, L. (1998). Mass Transportation Problems. Vol. I. Springer, New York. MR1619170

45.

[45] Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis–Hastings algorithms. Statist. Sci. 16 351–367. MR1888450 10.1214/ss/1015346320 euclid.ss/1015346320 [45] Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis–Hastings algorithms. Statist. Sci. 16 351–367. MR1888450 10.1214/ss/1015346320 euclid.ss/1015346320

46.

[46] Royer, G. (2007). An Initiation to Logarithmic Sobolev Inequalities. SMF/AMS Texts and Monographs 14. Amer. Math. Soc., Providence, RI. Translated from the 1999 French original by Donald Babbitt. MR2352327[46] Royer, G. (2007). An Initiation to Logarithmic Sobolev Inequalities. SMF/AMS Texts and Monographs 14. Amer. Math. Soc., Providence, RI. Translated from the 1999 French original by Donald Babbitt. MR2352327

47.

[47] Saff, E. B. and Totik, V. (1997). Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 316. Springer, Berlin. Appendix B by Thomas Bloom. MR1485778[47] Saff, E. B. and Totik, V. (1997). Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 316. Springer, Berlin. Appendix B by Thomas Bloom. MR1485778

48.

[48] Sandier, E. and Serfaty, S. (2012). 2D Coulomb gases and the renormalized energy. Preprint. Available at  arXiv:1201.35031201.3503 MR2945619 10.1007/s00220-012-1508-x[48] Sandier, E. and Serfaty, S. (2012). 2D Coulomb gases and the renormalized energy. Preprint. Available at  arXiv:1201.35031201.3503 MR2945619 10.1007/s00220-012-1508-x

49.

[49] Sandier, E. and Serfaty, S. (2013). 1D log gases and the renormalized energy: Crystallization at vanishing temperature. Preprint. Available at  arXiv:1303.29681303.2968[49] Sandier, E. and Serfaty, S. (2013). 1D log gases and the renormalized energy: Crystallization at vanishing temperature. Preprint. Available at  arXiv:1303.29681303.2968

50.

[50] Scardicchio, A., Zachary, C. E. and Torquato, S. (2009). Statistical properties of determinantal point processes in high-dimensional Euclidean spaces. Phys. Rev. E (3) 79 041108, 19. MR2551206[50] Scardicchio, A., Zachary, C. E. and Torquato, S. (2009). Statistical properties of determinantal point processes in high-dimensional Euclidean spaces. Phys. Rev. E (3) 79 041108, 19. MR2551206

51.

[51] Songzi, L., Li, X.-D. and Xie, Y.-X. (2013). Generalized Dyson Brownian motion, McKean–Vlasov equation and eigenvalues of random matrices. Preprint. Available at  arXiv:1303.12401303.1240[51] Songzi, L., Li, X.-D. and Xie, Y.-X. (2013). Generalized Dyson Brownian motion, McKean–Vlasov equation and eigenvalues of random matrices. Preprint. Available at  arXiv:1303.12401303.1240

52.

[52] Wang, R., Wang, X. and Wu, L. (2010). Sanov’s theorem in the Wasserstein distance: A necessary and sufficient condition. Statist. Probab. Lett. 80 505–512. MR2593592[52] Wang, R., Wang, X. and Wu, L. (2010). Sanov’s theorem in the Wasserstein distance: A necessary and sufficient condition. Statist. Probab. Lett. 80 505–512. MR2593592

53.

[53] Yattselev, M. L. (2013). Large deviations and linear statistics for potential theoretic ensembles associated with regular closed sets. Probab. Theory Related Fields 156 827–850. MR3078287 10.1007/s00440-012-0444-1[53] Yattselev, M. L. (2013). Large deviations and linear statistics for potential theoretic ensembles associated with regular closed sets. Probab. Theory Related Fields 156 827–850. MR3078287 10.1007/s00440-012-0444-1

54.

[54] Zoriĭ, N. V. (2003). Equilibrium potentials with external fields. Ukraïn. Mat. Zh. 55 1178–1195. MR2075132[54] Zoriĭ, N. V. (2003). Equilibrium potentials with external fields. Ukraïn. Mat. Zh. 55 1178–1195. MR2075132

55.

[55] Zoriĭ, N. V. (2003). Equilibrium problems for potentials with external fields. Ukraïn. Mat. Zh. 55 1315–1339. MR2073873[55] Zoriĭ, N. V. (2003). Equilibrium problems for potentials with external fields. Ukraïn. Mat. Zh. 55 1315–1339. MR2073873
Copyright © 2014 Institute of Mathematical Statistics
Djalil Chafaï, Nathael Gozlan, and Pierre-André Zitt "First-order global asymptotics for confined particles with singular pair repulsion," The Annals of Applied Probability 24(6), 2371-2413, (December 2014). https://doi.org/10.1214/13-AAP980
Published: December 2014
Vol.24 • No. 6 • December 2014
Back to Top