Open Access
October 2014 Rare event simulation for processes generated via stochastic fixed point equations
Jeffrey F. Collamore, Guoqing Diao, Anand N. Vidyashankar
Ann. Appl. Probab. 24(5): 2143-2175 (October 2014). DOI: 10.1214/13-AAP974
Abstract

In a number of applications, particularly in financial and actuarial mathematics, it is of interest to characterize the tail distribution of a random variable $V$ satisfying the distributional equation $V\mathop{=}^\mathcal{D}f(V)$, where $f(v)=A\max\{v,D\}+B$ for $(A,B,D)\in(0,\infty)\times\mathbb{R}^{2}$. This paper is concerned with computational methods for evaluating these tail probabilities. We introduce a novel importance sampling algorithm, involving an exponential shift over a random time interval, for estimating these rare event probabilities. We prove that the proposed estimator is: (i) consistent, (ii) strongly efficient and (iii) optimal within a wide class of dynamic importance sampling estimators. Moreover, using extensions of ideas from nonlinear renewal theory, we provide a precise description of the running time of the algorithm. To establish these results, we develop new techniques concerning the convergence of moments of stopped perpetuity sequences, and the first entrance and last exit times of associated Markov chains on $\mathbb{R}$. We illustrate our methods with a variety of numerical examples which demonstrate the ease and scope of the implementation.

References

1.

Alsmeyer, G., Iksanov, A. and Rösler, U. (2009). On distributional properties of perpetuities. J. Theoret. Probab. 22 666–682. MR2530108 10.1007/s10959-008-0156-8Alsmeyer, G., Iksanov, A. and Rösler, U. (2009). On distributional properties of perpetuities. J. Theoret. Probab. 22 666–682. MR2530108 10.1007/s10959-008-0156-8

2.

Asmussen, S. (2003). Applied Probability and Queues, 2nd ed. Springer, New York. MR1978607Asmussen, S. (2003). Applied Probability and Queues, 2nd ed. Springer, New York. MR1978607

3.

Asmussen, S. and Glynn, P. W. (2007). Stochastic Simulation: Algorithms and Analysis. Springer, New York. MR2331321Asmussen, S. and Glynn, P. W. (2007). Stochastic Simulation: Algorithms and Analysis. Springer, New York. MR2331321

4.

Blanchet, J., Lam, H. and Zwart, B. (2012). Efficient rare-event simulation for perpetuities. Stochastic Process. Appl. 122 3361–3392. MR2956109 10.1016/j.spa.2012.05.002Blanchet, J., Lam, H. and Zwart, B. (2012). Efficient rare-event simulation for perpetuities. Stochastic Process. Appl. 122 3361–3392. MR2956109 10.1016/j.spa.2012.05.002

5.

Collamore, J. F. (2002). Importance sampling techniques for the multidimensional ruin problem for general Markov additive sequences of random vectors. Ann. Appl. Probab. 12 382–421. MR1890070 10.1214/aoap/1015961169 euclid.aoap/1015961169 Collamore, J. F. (2002). Importance sampling techniques for the multidimensional ruin problem for general Markov additive sequences of random vectors. Ann. Appl. Probab. 12 382–421. MR1890070 10.1214/aoap/1015961169 euclid.aoap/1015961169

6.

Collamore, J. F. (2009). Random recurrence equations and ruin in a Markov-dependent stochastic economic environment. Ann. Appl. Probab. 19 1404–1458. MR2538076 10.1214/08-AAP584 euclid.aoap/1248700623 Collamore, J. F. (2009). Random recurrence equations and ruin in a Markov-dependent stochastic economic environment. Ann. Appl. Probab. 19 1404–1458. MR2538076 10.1214/08-AAP584 euclid.aoap/1248700623

7.

Collamore, J. F. and Vidyashankar, A. N. (2013a). Large deviation tail estimates and related limit laws for stochastic fixed point equations. In Random Matrices and Iterated Random Functions (G. Alsmeyer and M. Löwe, eds.) 91–117. Springer, Heidelberg. MR3095195 10.1007/978-3-642-38806-4_5Collamore, J. F. and Vidyashankar, A. N. (2013a). Large deviation tail estimates and related limit laws for stochastic fixed point equations. In Random Matrices and Iterated Random Functions (G. Alsmeyer and M. Löwe, eds.) 91–117. Springer, Heidelberg. MR3095195 10.1007/978-3-642-38806-4_5

8.

Collamore, J. F. and Vidyashankar, A. N. (2013b). Tail estimates for stochastic fixed point equations via nonlinear renewal theory. Stochastic Process. Appl. 123 3378–3429. MR3071384 10.1016/j.spa.2013.04.015Collamore, J. F. and Vidyashankar, A. N. (2013b). Tail estimates for stochastic fixed point equations via nonlinear renewal theory. Stochastic Process. Appl. 123 3378–3429. MR3071384 10.1016/j.spa.2013.04.015

9.

Collamore, J. F., Vidyashankar, A. N. and Xu, J. (2013). Rare event simulation for stochastic fixed point equations related to the smoothing transform. In Proceedings of the Winter Simulation Conference 555–563.Collamore, J. F., Vidyashankar, A. N. and Xu, J. (2013). Rare event simulation for stochastic fixed point equations related to the smoothing transform. In Proceedings of the Winter Simulation Conference 555–563.

10.

Dupuis, P. and Wang, H. (2005). Dynamic importance sampling for uniformly recurrent Markov chains. Ann. Appl. Probab. 15 1–38. MR2115034 10.1214/105051604000001016 euclid.aoap/1106922319 Dupuis, P. and Wang, H. (2005). Dynamic importance sampling for uniformly recurrent Markov chains. Ann. Appl. Probab. 15 1–38. MR2115034 10.1214/105051604000001016 euclid.aoap/1106922319

11.

Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126–166. MR1097468 10.1214/aoap/1177005985 euclid.aoap/1177005985 Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126–166. MR1097468 10.1214/aoap/1177005985 euclid.aoap/1177005985

12.

Heyde, C. C. (1966). Some renewal theorems with application to a first passage problem. Ann. Math. Statist. 37 699–710. MR193692 10.1214/aoms/1177699465 euclid.aoms/1177699465 Heyde, C. C. (1966). Some renewal theorems with application to a first passage problem. Ann. Math. Statist. 37 699–710. MR193692 10.1214/aoms/1177699465 euclid.aoms/1177699465

13.

Iscoe, I., Ney, P. and Nummelin, E. (1985). Large deviations of uniformly recurrent Markov additive processes. Adv. in Appl. Math. 6 373–412. MR826590 10.1016/0196-8858(85)90017-XIscoe, I., Ney, P. and Nummelin, E. (1985). Large deviations of uniformly recurrent Markov additive processes. Adv. in Appl. Math. 6 373–412. MR826590 10.1016/0196-8858(85)90017-X

14.

Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131 207–248. MR440724 10.1007/BF02392040Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131 207–248. MR440724 10.1007/BF02392040

15.

Lai, T. L. and Siegmund, D. (1979). A nonlinear renewal theory with applications to sequential analysis. II. Ann. Statist. 7 60–76. MR515684 10.1214/aos/1176344555 euclid.aos/1176344555 Lai, T. L. and Siegmund, D. (1979). A nonlinear renewal theory with applications to sequential analysis. II. Ann. Statist. 7 60–76. MR515684 10.1214/aos/1176344555 euclid.aos/1176344555

16.

Letac, G. (1986). A contraction principle for certain Markov chains and its applications. In Random Matrices and Their Applications (Brunswick, Maine, 1984). Contemp. Math. 50 263–273. Amer. Math. Soc., Providence, RI. MR841098 10.1090/conm/050/841098Letac, G. (1986). A contraction principle for certain Markov chains and its applications. In Random Matrices and Their Applications (Brunswick, Maine, 1984). Contemp. Math. 50 263–273. Amer. Math. Soc., Providence, RI. MR841098 10.1090/conm/050/841098

17.

Nummelin, E. (1984). General Irreducible Markov Chains and Nonnegative Operators. Cambridge Univ. Press, Cambridge. MR776608Nummelin, E. (1984). General Irreducible Markov Chains and Nonnegative Operators. Cambridge Univ. Press, Cambridge. MR776608

18.

Siegmund, D. (1976). Importance sampling in the Monte Carlo study of sequential tests. Ann. Statist. 4 673–684. MR418369 10.1214/aos/1176343541 euclid.aos/1176343541 Siegmund, D. (1976). Importance sampling in the Monte Carlo study of sequential tests. Ann. Statist. 4 673–684. MR418369 10.1214/aos/1176343541 euclid.aos/1176343541

19.

Siegmund, D. (1985). Sequential Analysis: Tests and Confidence Intervals. Springer, New York. MR799155Siegmund, D. (1985). Sequential Analysis: Tests and Confidence Intervals. Springer, New York. MR799155

20.

Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. in Appl. Probab. 11 750–783. MR544194 10.2307/1426858Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. in Appl. Probab. 11 750–783. MR544194 10.2307/1426858

21.

Woodroofe, M. (1982). Nonlinear Renewal Theory in Sequential Analysis. SIAM, Philadelphia, PA. MR660065Woodroofe, M. (1982). Nonlinear Renewal Theory in Sequential Analysis. SIAM, Philadelphia, PA. MR660065
Copyright © 2014 Institute of Mathematical Statistics
Jeffrey F. Collamore, Guoqing Diao, and Anand N. Vidyashankar "Rare event simulation for processes generated via stochastic fixed point equations," The Annals of Applied Probability 24(5), 2143-2175, (October 2014). https://doi.org/10.1214/13-AAP974
Published: October 2014
Vol.24 • No. 5 • October 2014
Back to Top