Open Access
October 2014 Mean field limit for disordered diffusions with singular interactions
Eric Luçon, Wilhelm Stannat
Ann. Appl. Probab. 24(5): 1946-1993 (October 2014). DOI: 10.1214/13-AAP968
Abstract

Motivated by considerations from neuroscience (macroscopic behavior of large ensembles of interacting neurons), we consider a population of mean field interacting diffusions in $\mathbf{R} ^{m}$ in the presence of a random environment and with spatial extension: each diffusion is attached to one site of the lattice $\mathbf{Z} ^{d}$, and the interaction between two diffusions is attenuated by a spatial weight that depends on their positions. For a general class of singular weights (including the case already considered in the physical literature when interactions obey to a power-law of parameter $0<\alpha<d$), we address the convergence as $N\to\infty$ of the empirical measure of the diffusions to the solution of a deterministic McKean–Vlasov equation and prove well-posedness of this equation, even in the degenerate case without noise. We provide also precise estimates of the speed of this convergence, in terms of an appropriate weighted Wasserstein distance, exhibiting in particular nontrivial fluctuations in the power-law case when $\frac{d}{2}\leq\alpha<d$. Our framework covers the case of polynomially bounded monotone dynamics that are especially encountered in the main models of neural oscillators.

References

1.

[1] Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. and Spigler, R. (2005). The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Modern Phys. 77 137–185.[1] Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. and Spigler, R. (2005). The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Modern Phys. 77 137–185.

2.

[2] Baladron, J., Fasoli, D., Faugeras, O. and Touboul, J. (2012). Mean-field description and propagation of chaos in networks of Hodgkin–Huxley and FitzHugh–Nagumo neurons. J. Math. Neurosci. 2 Art. 10, 50. MR2974499 10.1186/2190-8567-2-10[2] Baladron, J., Fasoli, D., Faugeras, O. and Touboul, J. (2012). Mean-field description and propagation of chaos in networks of Hodgkin–Huxley and FitzHugh–Nagumo neurons. J. Math. Neurosci. 2 Art. 10, 50. MR2974499 10.1186/2190-8567-2-10

3.

[3] Bertini, L., Giacomin, G. and Poquet, C. (2012). Synchronization and random long time dynamics for mean-field plane rotators. Available at  arXiv:1209.45371209.4537[3] Bertini, L., Giacomin, G. and Poquet, C. (2012). Synchronization and random long time dynamics for mean-field plane rotators. Available at  arXiv:1209.45371209.4537

4.

[4] Bolley, F., Guillin, A. and Malrieu, F. (2010). Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov–Fokker–Planck equation. M2AN Math. Model. Numer. Anal. 44 867–884. MR2731396 10.1051/m2an/2010045[4] Bolley, F., Guillin, A. and Malrieu, F. (2010). Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov–Fokker–Planck equation. M2AN Math. Model. Numer. Anal. 44 867–884. MR2731396 10.1051/m2an/2010045

5.

[5] Bolley, F., Guillin, A. and Villani, C. (2007). Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Related Fields 137 541–593. MR2280433 10.1007/s00440-006-0004-7[5] Bolley, F., Guillin, A. and Villani, C. (2007). Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Related Fields 137 541–593. MR2280433 10.1007/s00440-006-0004-7

6.

[6] Bossy, M., Jabir, J.-F. and Talay, D. (2011). On conditional McKean Lagrangian stochastic models. Probab. Theory Related Fields 151 319–351. MR2834721 10.1007/s00440-010-0301-z[6] Bossy, M., Jabir, J.-F. and Talay, D. (2011). On conditional McKean Lagrangian stochastic models. Probab. Theory Related Fields 151 319–351. MR2834721 10.1007/s00440-010-0301-z

7.

[7] Bossy, M. and Talay, D. (1996). Convergence rate for the approximation of the limit law of weakly interacting particles: Application to the Burgers equation. Ann. Appl. Probab. 6 818–861. MR1410117 10.1214/aoap/1034968229 euclid.aoap/1034968229 [7] Bossy, M. and Talay, D. (1996). Convergence rate for the approximation of the limit law of weakly interacting particles: Application to the Burgers equation. Ann. Appl. Probab. 6 818–861. MR1410117 10.1214/aoap/1034968229 euclid.aoap/1034968229

8.

[8] Cerrai, S. (2001). Second Order PDE’s in Finite and Infinite Dimension: A Probabilistic Approach. Lecture Notes in Math. 1762. Springer, Berlin. MR1840644[8] Cerrai, S. (2001). Second Order PDE’s in Finite and Infinite Dimension: A Probabilistic Approach. Lecture Notes in Math. 1762. Springer, Berlin. MR1840644

9.

[9] Chowdhury, D. and Cross, M. C. (2010). Synchronization of oscillators with long-range power law interactions. Phys. Rev. E (3) 82 016205.[9] Chowdhury, D. and Cross, M. C. (2010). Synchronization of oscillators with long-range power law interactions. Phys. Rev. E (3) 82 016205.

10.

[10] Dai Pra, P. and den Hollander, F. (1996). McKean–Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84 735–772. MR1400186 10.1007/BF02179656[10] Dai Pra, P. and den Hollander, F. (1996). McKean–Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84 735–772. MR1400186 10.1007/BF02179656

11.

[11] Da Prato, G. and Tubaro, L. (1998). Some remarks about backward Itô formula and applications. Stoch. Anal. Appl. 16 993–1003. MR1650287 10.1080/07362999808809576[11] Da Prato, G. and Tubaro, L. (1998). Some remarks about backward Itô formula and applications. Stoch. Anal. Appl. 16 993–1003. MR1650287 10.1080/07362999808809576

12.

[12] Delarue, F., Inglis, J., Rubenthaler, S. and Tanré, E. (2012). Global solvability of a networked integrate-and-fire model of McKean–Vlasov type. Available at  arXiv:1211.02991211.0299[12] Delarue, F., Inglis, J., Rubenthaler, S. and Tanré, E. (2012). Global solvability of a networked integrate-and-fire model of McKean–Vlasov type. Available at  arXiv:1211.02991211.0299

13.

[13] Del Moral, P. and Miclo, L. (2000). A Moran particle system approximation of Feynman–Kac formulae. Stochastic Process. Appl. 86 193–216. MR1741805 10.1016/S0304-4149(99)00094-0[13] Del Moral, P. and Miclo, L. (2000). A Moran particle system approximation of Feynman–Kac formulae. Stochastic Process. Appl. 86 193–216. MR1741805 10.1016/S0304-4149(99)00094-0

14.

[14] Dudley, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathematics 74. Cambridge Univ. Press, Cambridge. MR1932358[14] Dudley, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathematics 74. Cambridge Univ. Press, Cambridge. MR1932358

15.

[15] Ermentrout, G. B. and Terman, D. H. (2010). Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics 35. Springer, New York. MR2674516[15] Ermentrout, G. B. and Terman, D. H. (2010). Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics 35. Springer, New York. MR2674516

16.

[16] Gärtner, J. (1988). On the McKean–Vlasov limit for interacting diffusions. Math. Nachr. 137 197–248. MR968996 10.1002/mana.19881370116[16] Gärtner, J. (1988). On the McKean–Vlasov limit for interacting diffusions. Math. Nachr. 137 197–248. MR968996 10.1002/mana.19881370116

17.

[17] Gel’fand, I. M. and Vilenkin, N. Y. (1964). Generalized Functions. Vol. 4: Applications of Harmonic Analysis. Academic Press, New York. MR173945[17] Gel’fand, I. M. and Vilenkin, N. Y. (1964). Generalized Functions. Vol. 4: Applications of Harmonic Analysis. Academic Press, New York. MR173945

18.

[18] Giacomin, G., Luçon, E. and Poquet, C. (2011). Coherence stability and effect of random natural frequencies in population of coupled oscillators. Available at  arXiv:1111.35811111.3581 MR3207725 10.1007/s10884-014-9370-5[18] Giacomin, G., Luçon, E. and Poquet, C. (2011). Coherence stability and effect of random natural frequencies in population of coupled oscillators. Available at  arXiv:1111.35811111.3581 MR3207725 10.1007/s10884-014-9370-5

19.

[19] Giacomin, G., Pakdaman, K. and Pellegrin, X. (2012). Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity 25 1247–1273. MR2914138 10.1088/0951-7715/25/5/1247[19] Giacomin, G., Pakdaman, K. and Pellegrin, X. (2012). Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity 25 1247–1273. MR2914138 10.1088/0951-7715/25/5/1247

20.

[20] Gupta, S., Potters, M. and Ruffo, S. (2012). One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial Fourier modes. Phys. Rev. E (3) 85 066201.[20] Gupta, S., Potters, M. and Ruffo, S. (2012). One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial Fourier modes. Phys. Rev. E (3) 85 066201.

21.

[21] Hairer, M., Hutzenthaler, M. and Jentzen, A. (2012). Loss of regularity for Kolmogorov equations. Available at  arXiv:1209.60351209.6035[21] Hairer, M., Hutzenthaler, M. and Jentzen, A. (2012). Loss of regularity for Kolmogorov equations. Available at  arXiv:1209.60351209.6035

22.

[22] Jourdain, B. and Méléard, S. (1998). Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. Henri Poincaré Probab. Stat. 34 727–766. MR1653393 10.1016/S0246-0203(99)80002-8[22] Jourdain, B. and Méléard, S. (1998). Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. Henri Poincaré Probab. Stat. 34 727–766. MR1653393 10.1016/S0246-0203(99)80002-8

23.

[23] Krylov, N. V. (1995). Introduction to the Theory of Diffusion Processes. Translations of Mathematical Monographs 142. Amer. Math. Soc., Providence, RI. MR1311478[23] Krylov, N. V. (1995). Introduction to the Theory of Diffusion Processes. Translations of Mathematical Monographs 142. Amer. Math. Soc., Providence, RI. MR1311478

24.

[24] Luçon, E. (2011). Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electron. J. Probab. 16 792–829. MR2793244[24] Luçon, E. (2011). Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electron. J. Probab. 16 792–829. MR2793244

25.

[25] Malrieu, F. (2003). Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13 540–560. MR1970276 10.1214/aoap/1050689593 euclid.aoap/1050689593 [25] Malrieu, F. (2003). Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13 540–560. MR1970276 10.1214/aoap/1050689593 euclid.aoap/1050689593

26.

[26] Maródi, M., d’Ovidio, F. and Vicsek, T. (2002). Synchronization of oscillators with long range interaction: Phase transition and anomalous finite size effects. Phys. Rev. E (3) 66 011109.[26] Maródi, M., d’Ovidio, F. and Vicsek, T. (2002). Synchronization of oscillators with long range interaction: Phase transition and anomalous finite size effects. Phys. Rev. E (3) 66 011109.

27.

[27] McKean, H. P. Jr. (1967). Propagation of chaos for a class of non-linear parabolic equations. In Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967) 41–57. Air Force Office Sci. Res., Arlington, VA. MR233437[27] McKean, H. P. Jr. (1967). Propagation of chaos for a class of non-linear parabolic equations. In Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967) 41–57. Air Force Office Sci. Res., Arlington, VA. MR233437

28.

[28] Méléard, S. and Roelly-Coppoletta, S. (1987). A propagation of chaos result for a system of particles with moderate interaction. Stochastic Process. Appl. 26 317–332. MR923112 10.1016/0304-4149(87)90184-0[28] Méléard, S. and Roelly-Coppoletta, S. (1987). A propagation of chaos result for a system of particles with moderate interaction. Stochastic Process. Appl. 26 317–332. MR923112 10.1016/0304-4149(87)90184-0

29.

[29] Oelschläger, K. (1984). A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Probab. 12 458–479. MR735849 10.1214/aop/1176993301 euclid.aop/1176993301 [29] Oelschläger, K. (1984). A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Probab. 12 458–479. MR735849 10.1214/aop/1176993301 euclid.aop/1176993301

30.

[30] Oelschläger, K. (1985). A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. Verw. Gebiete 69 279–322. MR779460[30] Oelschläger, K. (1985). A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. Verw. Gebiete 69 279–322. MR779460

31.

[31] Omelchenko, I., Maistrenko, Y., Hövel, P. and Schöll, E. (2011). Loss of coherence in dynamical networks: Spatial chaos and chimera states. Phys. Rev. Lett. 106 234102.[31] Omelchenko, I., Maistrenko, Y., Hövel, P. and Schöll, E. (2011). Loss of coherence in dynamical networks: Spatial chaos and chimera states. Phys. Rev. Lett. 106 234102.

32.

[32] Omelchenko, I., Riemenschneider, B., Hövel, P., Maistrenko, Y. and Schöll, E. (2012). Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E (3) 85 026212.[32] Omelchenko, I., Riemenschneider, B., Hövel, P., Maistrenko, Y. and Schöll, E. (2012). Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E (3) 85 026212.

33.

[33] Rogers, J. L. and Wille, L. T. (1996). Phase transitions in nonlinear oscillator chains. Phys. Rev. E (3) 54 R2193–R2196.[33] Rogers, J. L. and Wille, L. T. (1996). Phase transitions in nonlinear oscillator chains. Phys. Rev. E (3) 54 R2193–R2196.

34.

[34] Strogatz, S. H. and Mirollo, R. E. (1991). Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63 613–635. MR1115806 10.1007/BF01029202[34] Strogatz, S. H. and Mirollo, R. E. (1991). Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63 613–635. MR1115806 10.1007/BF01029202

35.

[35] Sznitman, A.-S. (1984). Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal. 56 311–336. MR743844 10.1016/0022-1236(84)90080-6[35] Sznitman, A.-S. (1984). Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal. 56 311–336. MR743844 10.1016/0022-1236(84)90080-6

36.

[36] Sznitman, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165–251. Springer, Berlin. MR1108185[36] Sznitman, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165–251. Springer, Berlin. MR1108185

37.

[37] Touboul, J. (2011). Propagation of chaos in neural fields. Available at  arXiv:1108.24141108.2414 MR3199987 10.1214/13-AAP950 euclid.aoap/1398258102 [37] Touboul, J. (2011). Propagation of chaos in neural fields. Available at  arXiv:1108.24141108.2414 MR3199987 10.1214/13-AAP950 euclid.aoap/1398258102

38.

[38] Touboul, J. (2012). Limits and dynamics of stochastic neuronal networks with random heterogeneous delays. J. Stat. Phys. 149 569–597. MR2998591 10.1007/s10955-012-0607-6[38] Touboul, J. (2012). Limits and dynamics of stochastic neuronal networks with random heterogeneous delays. J. Stat. Phys. 149 569–597. MR2998591 10.1007/s10955-012-0607-6

39.

[39] Villani, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin. MR2459454[39] Villani, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin. MR2459454

40.

[40] Wainrib, G. and Touboul, J. (2013). Topological and dynamical complexity of random neural networks. Phys. Rev. Lett. 110 118101.[40] Wainrib, G. and Touboul, J. (2013). Topological and dynamical complexity of random neural networks. Phys. Rev. Lett. 110 118101.
Copyright © 2014 Institute of Mathematical Statistics
Eric Luçon and Wilhelm Stannat "Mean field limit for disordered diffusions with singular interactions," The Annals of Applied Probability 24(5), 1946-1993, (October 2014). https://doi.org/10.1214/13-AAP968
Published: October 2014
Vol.24 • No. 5 • October 2014
Back to Top