Open Access
February 2006 Individual versus cluster recoveries within a spatially structured population
L. Belhadji, N. Lanchier
Ann. Appl. Probab. 16(1): 403-422 (February 2006). DOI: 10.1214/105051605000000764
Abstract

Stochastic modeling of disease dynamics has had a long tradition. Among the first epidemic models including a spatial structure in the form of local interactions is the contact process. In this article we investigate two extensions of the contact process describing the course of a single disease within a spatially structured human population distributed in social clusters. That is, each site of the d-dimensional integer lattice is occupied by a cluster of individuals; each individual can be healthy or infected. The evolution of the disease depends on three parameters, namely the outside infection rate which models the interactions between the clusters, the within infection rate which takes into account the repeated contacts between individuals in the same cluster, and the size of each social cluster. For the first model, we assume cluster recoveries, while individual recoveries are assumed for the second one. The aim is to investigate the existence of nontrivial stationary distributions for both processes depending on the value of each of the three parameters. Our results show that the probability of an epidemic strongly depends on the recovery mechanism.

References

1.

van den Berg, J., Grimmett, G. and Schinazi, R. (1998). Dependent random graphs and spatial epidemics. Ann. Appl. Probab. 8 317–336.  MR1624925 0946.92028 10.1214/aoap/1028903529 euclid.aoap/1028903529 van den Berg, J., Grimmett, G. and Schinazi, R. (1998). Dependent random graphs and spatial epidemics. Ann. Appl. Probab. 8 317–336.  MR1624925 0946.92028 10.1214/aoap/1028903529 euclid.aoap/1028903529

2.

Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462–1482.  MR1071804 0718.60109 10.1214/aop/1176990627 euclid.aop/1176990627 Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462–1482.  MR1071804 0718.60109 10.1214/aop/1176990627 euclid.aop/1176990627

3.

Bramson, M. and Durrett, R. (1988). A simple proof of the stability theorem of Gray and Griffeath. Probab. Theory Related Fields 80 293–298.  MR968822 10.1007/BF00356107 Bramson, M. and Durrett, R. (1988). A simple proof of the stability theorem of Gray and Griffeath. Probab. Theory Related Fields 80 293–298.  MR968822 10.1007/BF00356107

4.

Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth, Pacific Grove, CA.  MR940469 0659.60129 Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth, Pacific Grove, CA.  MR940469 0659.60129

5.

Durrett, R. (1995). Ten lectures on particle systems. Lectures on Probability Theory. Lecture Notes in Math. 1608 97–201. Springer, Berlin.  MR1383122 0840.60088 10.1007/BFb0095745 Durrett, R. (1995). Ten lectures on particle systems. Lectures on Probability Theory. Lecture Notes in Math. 1608 97–201. Springer, Berlin.  MR1383122 0840.60088 10.1007/BFb0095745

6.

Durrett, R. and Levin, S. (1994). The importance of being discrete (and spatial). Theor. Popul. Biol. 46 363–394.  0846.92027 10.1006/tpbi.1994.1032 Durrett, R. and Levin, S. (1994). The importance of being discrete (and spatial). Theor. Popul. Biol. 46 363–394.  0846.92027 10.1006/tpbi.1994.1032

7.

Harris, T. (1972). Nearest neighbor Markov interaction processes on multidimensional lattices. Adv. in Math. 9 66–89.  MR307392 0267.60107 10.1016/0001-8708(72)90030-8 Harris, T. (1972). Nearest neighbor Markov interaction processes on multidimensional lattices. Adv. in Math. 9 66–89.  MR307392 0267.60107 10.1016/0001-8708(72)90030-8

8.

Harris, T. E. (1974). Contact interactions on a lattice. Ann. Probab. 2 969–988.  MR356292 0334.60052 10.1214/aop/1176996493 euclid.aop/1176996493 Harris, T. E. (1974). Contact interactions on a lattice. Ann. Probab. 2 969–988.  MR356292 0334.60052 10.1214/aop/1176996493 euclid.aop/1176996493

9.

Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.  MR776231 0559.60078 Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.  MR776231 0559.60078

10.

Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin.  MR1717346 0949.60006 Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin.  MR1717346 0949.60006

11.

Richardson, D. (1973). Random growth in a tesselation. Proc. Cambridge Philos. Soc. 74 512–528.  MR329079 10.1017/S0305004100077288 Richardson, D. (1973). Random growth in a tesselation. Proc. Cambridge Philos. Soc. 74 512–528.  MR329079 10.1017/S0305004100077288

12.

Schinazi, R. (2002). On the role of social clusters in the transmission of infectious diseases. Theor. Popul. Biol. 61 163–169.  1040.92039 10.1006/tpbi.2001.1567 Schinazi, R. (2002). On the role of social clusters in the transmission of infectious diseases. Theor. Popul. Biol. 61 163–169.  1040.92039 10.1006/tpbi.2001.1567
Copyright © 2006 Institute of Mathematical Statistics
L. Belhadji and N. Lanchier "Individual versus cluster recoveries within a spatially structured population," The Annals of Applied Probability 16(1), 403-422, (February 2006). https://doi.org/10.1214/105051605000000764
Published: February 2006
Vol.16 • No. 1 • February 2006
Back to Top