Open Access
Translator Disclaimer
August 2004 Optimal scaling of MaLa for nonlinear regression
Laird Arnault Breyer, Mauro Piccioni, Sergio Scarlatti
Ann. Appl. Probab. 14(3): 1479-1505 (August 2004). DOI: 10.1214/105051604000000369

Abstract

We address the problem of simulating efficiently from the posterior distribution over the parameters of a particular class of nonlinear regression models using a Langevin–Metropolis sampler. It is shown that as the number N of parameters increases, the proposal variance must scale as N1/3 in order to converge to a diffusion. This generalizes previous results of Roberts and Rosenthal [J. R. Stat. Soc. Ser. B Stat. Methodol. 60 (1998) 255–268] for the i.i.d. case, showing the robustness of their analysis.

Citation

Download Citation

Laird Arnault Breyer. Mauro Piccioni. Sergio Scarlatti. "Optimal scaling of MaLa for nonlinear regression." Ann. Appl. Probab. 14 (3) 1479 - 1505, August 2004. https://doi.org/10.1214/105051604000000369

Information

Published: August 2004
First available in Project Euclid: 13 July 2004

zbMATH: 1048.62062
MathSciNet: MR2071431
Digital Object Identifier: 10.1214/105051604000000369

Subjects:
Primary: 60F17
Secondary: 60F05 , 60F10

Keywords: Bayesian nonlinear regression , Hastings–Metropolis , Langevin diffusion , Markov chain Monte Carlo , propagation of chaos

Rights: Copyright © 2004 Institute of Mathematical Statistics

JOURNAL ARTICLE
27 PAGES


SHARE
Vol.14 • No. 3 • August 2004
Back to Top