May 2023 Stationary states of the one-dimensional facilitated asymmetric exclusion process
A. Ayyer, S. Goldstein, J. L. Lebowitz, E. R. Speer
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 59(2): 726-742 (May 2023). DOI: 10.1214/22-AIHP1264

Abstract

We describe the translation invariant stationary states (TIS) of the one-dimensional facilitated asymmetric exclusion process in continuous time, in which a particle at site iZ jumps to site i+1 (respectively i1) with rate p (resp. 1p), provided that site i1 (resp. i+1) is occupied and site i+1 (resp. i1) is empty. All TIS states with density ρ1/2 are supported on trapped configurations in which no two adjacent sites are occupied; we prove that if in this case the initial state is i.i.d. Bernoulli then the final state is independent of p. This independence also holds for the system on a finite ring. For ρ>1/2 there is only one TIS. It is the infinite volume limit of the probability distribution that gives uniform weight to all configurations in which no two holes are adjacent, and is isomorphic to the Gibbs measure for hard core particles with nearest neighbor exclusion.

Nous décrivons les états stationnaires invariants par translation (TIS) du processus d’exclusion asymétrique facilité unidimensionnel en temps continu, dans lequel une particule sur le site iZ saute vers le site i+1 (respectivement i1) avec un taux p (resp. 1p), à condition que le site i1 (resp. i+1) soit occupé et que le site i+1 (resp. i1) soit vide. Tous les états TIS avec une densité ρ1/2 sont supportés par des configurations piégées dans lesquelles aucun des deux sites adjacents n’est occupé ; dans ce cas, nous prouvons que si l’état initial est i.i.d. Bernoulli alors l’état final est indépendant de p. Cette indépendance est également valable pour le système sur un anneau fini. Pour ρ>1/2 il n’y a qu’un seul TIS. Il s’agit de la limite en volume infini de la mesure de probabilité qui donne un poids uniforme à toutes les configurations dans lesquelles deux trous ne sont pas adjacents, et isomorphe à la mesure de Gibbs pour les particules à noyau dur avec exclusion du plus proche voisin.

Funding Statement

The work of JLL was supported in part by the AFOSR. AA was partially supported by Department of Science and Technology grant EMR/2016/006624 and by the UGC Centre for Advanced Studies.

Acknowledgements

We thank two anonymous referees for helpful comments. JLL thanks the IAS for its hospitality.

Citation

Download Citation

A. Ayyer. S. Goldstein. J. L. Lebowitz. E. R. Speer. "Stationary states of the one-dimensional facilitated asymmetric exclusion process." Ann. Inst. H. Poincaré Probab. Statist. 59 (2) 726 - 742, May 2023. https://doi.org/10.1214/22-AIHP1264

Information

Received: 10 June 2021; Revised: 28 December 2021; Accepted: 17 March 2022; Published: May 2023
First available in Project Euclid: 12 April 2023

MathSciNet: MR4575014
zbMATH: 07699939
Digital Object Identifier: 10.1214/22-AIHP1264

Subjects:
Primary: 60K35 , 82C22
Secondary: 82C23 , 82C26

Keywords: Asymmetric facilitated exclusion processes , Asymmetry independence , Facilitated jumps , F-ASEP , F-TASEP , One dimensional conserved lattice gas , Translation invariant steady states

Rights: Copyright © 2023 Association des Publications de l’Institut Henri Poincaré

Vol.59 • No. 2 • May 2023
Back to Top