Abstract
We study matrices whose entries are free or exchangeable noncommutative elements in some tracial -probability space. More precisely, we consider operator-valued Wigner and Wishart matrices and prove quantitative convergence to operator-valued semicircular elements over some subalgebra in terms of Cauchy transforms and the Kolmogorov distance. As direct applications, we obtain explicit rates of convergence for a large class of random block matrices with independent or correlated blocks. Our approach relies on a noncommutative extension of the Lindeberg method and operator-valued Gaussian interpolation techniques.
Nous étudions des matrices dont les entrées sont des variables libres ou échangeables d’un W*-espace de probabilités tracial. Plus précisément, nous considérons des matrices de Wigner et de Wishart avec des entrées à valeurs opérateurs et nous montrons la convergence quantitative, vers des variables semi-circulaires à valeurs opérateurs sur une certaine sous-algèbre, en termes de transformées de Cauchy et de distance de Kolmogorov. Comme applications directes, nous obtenons des taux de convergence explicites pour une large classe de matrices aléatoires par blocs avec des blocs indépendants ou corrélés. Notre approche repose sur une extension non-commutative de la méthode de Lindeberg et de techniques d’interpolation gaussiennes à valeurs opérateurs.
Funding Statement
MB was partially supported by the ERC Advanced Grant NCDFP 339760 held by Roland Speicher. GC is supported by the Project MESA (ANR-18-CE40-006) and by the Project STARS (ANR-20-CE40-0008) of the French National Research Agency (ANR).
Acknowledgements
The authors would like to thank the LabEx CIMI for covering some traveling expenses to work on this paper. The authors would also like to thank Tobias Mai for fruitful discussions on the Lindeberg method and the referee for the comments/suggestions that helped improve the paper.
Citation
Marwa Banna. Guillaume Cébron. "Operator-valued matrices with free or exchangeable entries." Ann. Inst. H. Poincaré Probab. Statist. 59 (1) 503 - 537, February 2023. https://doi.org/10.1214/22-AIHP1255
Information