Open Access
May 2019 How round are the complementary components of planar Brownian motion?
Nina Holden, Şerban Nacu, Yuval Peres, Thomas S. Salisbury
Ann. Inst. H. Poincaré Probab. Statist. 55(2): 882-908 (May 2019). DOI: 10.1214/18-AIHP902

Abstract

Consider a Brownian motion $W$ in $\mathbf{C}$ started from $0$ and run for time 1. Let $A(1),A(2),\ldots$ denote the bounded connected components of $\mathbf{C}-W([0,1])$. Let $R(i)$ (resp. $r(i)$) denote the out-radius (resp. in-radius) of $A(i)$ for $i\in\mathbf{N}$. Our main result is that ${\mathbf{E}}[\sum_{i}R(i)^{2}|\log R(i)|^{\theta}]<\infty$ for any $\theta<1$. We also prove that $\sum_{i}r(i)^{2}|\log r(i)|=\infty$ almost surely. These results have the interpretation that most of the components $A(i)$ have a rather regular or round shape.

Soit $W$ un mouvement brownien dans $\mathbf{C}$ issu de $0$. Soit $A(1),A(2),\ldots$ les composantes connexes bornées de $\mathbf{C}\setminus W([0,1])$. Soit $R(i)$ (resp. $r(i)$) le rayon extérieur (resp. le rayon intérieur) de $A(i)$, pour $i\in\mathbf{N}$. Notre résultat principal est que $\mathbf{E}[\sum_{i}R(i)^{2}|\log R(i)|^{\theta}]<\infty$ pour tout $\theta<1$. Nous montrons aussi que $\sum_{i}r(i)^{2}|\log r(i)|]=\infty$ presque surement. Ces résultats peuvent s’interpréter comme le fait que la plupart des composantes $A(i)$ ont une forme assez régulière, ou ronde.

Citation

Download Citation

Nina Holden. Şerban Nacu. Yuval Peres. Thomas S. Salisbury. "How round are the complementary components of planar Brownian motion?." Ann. Inst. H. Poincaré Probab. Statist. 55 (2) 882 - 908, May 2019. https://doi.org/10.1214/18-AIHP902

Information

Received: 24 January 2017; Revised: 24 March 2018; Accepted: 24 March 2018; Published: May 2019
First available in Project Euclid: 14 May 2019

zbMATH: 07097335
MathSciNet: MR3949957
Digital Object Identifier: 10.1214/18-AIHP902

Subjects:
Primary: 60G17

Keywords: Complementary components of planar Brownian motion , Planar Brownian motion

Rights: Copyright © 2019 Institut Henri Poincaré

Vol.55 • No. 2 • May 2019
Back to Top