Translator Disclaimer
February 2018 On sensitivity of uniform mixing times
Jonathan Hermon
Ann. Inst. H. Poincaré Probab. Statist. 54(1): 234-248 (February 2018). DOI: 10.1214/16-AIHP802

Abstract

We show that the order of the $L_{\infty}$-mixing time of simple random walks on a sequence of uniformly bounded degree graphs of size $n$ may increase by an optimal factor of $\Theta(\log\log n)$ as a result of a bounded perturbation of the edge weights. This answers a question and a conjecture of Kozma.

Nous montrons que le temps de mélange pour la distance $L_{\infty}$ d’une marche aléatoire sur une suite de graphe de taille $n$ et de degré uniformément borné peut être multiplié par un facteur d’ordre $\log\log n$ (optimal) en perturbant le poids des arrêtes du graphe de manière uniformément bornée. Ceci résout une question et une conjecture de Kozma.

Citation

Download Citation

Jonathan Hermon. "On sensitivity of uniform mixing times." Ann. Inst. H. Poincaré Probab. Statist. 54 (1) 234 - 248, February 2018. https://doi.org/10.1214/16-AIHP802

Information

Received: 6 July 2016; Revised: 26 September 2016; Accepted: 17 October 2016; Published: February 2018
First available in Project Euclid: 19 February 2018

zbMATH: 06868370
MathSciNet: MR3765888
Digital Object Identifier: 10.1214/16-AIHP802

Subjects:
Primary: 60J10

Rights: Copyright © 2018 Institut Henri Poincaré

JOURNAL ARTICLE
15 PAGES


SHARE
Vol.54 • No. 1 • February 2018
Back to Top