Translator Disclaimer
August 2016 Martingale defocusing and transience of a self-interacting random walk
Yuval Peres, Bruno Schapira, Perla Sousi
Ann. Inst. H. Poincaré Probab. Statist. 52(3): 1009-1022 (August 2016). DOI: 10.1214/14-AIHP667

Abstract

Suppose that $(X,Y,Z)$ is a random walk in $\mathbb{Z}^{3}$ that moves in the following way: on the first visit to a vertex only $Z$ changes by $\pm1$ equally likely, while on later visits to the same vertex $(X,Y)$ performs a two-dimensional random walk step. We show that this walk is transient thus answering a question of Benjamini, Kozma and Schapira. One important ingredient of the proof is a dispersion result for martingales.

Supposons que $(X,Y,Z)$ soit une marche aléatoire dans $\mathbb{Z}^{3}$ qui se déplace de la façon suivante : à la première visite en un site, seule la coordonnée $Z$ saute de $\pm1$ avec probabilité uniforme, et aux visites suivantes en ce site $(X,Y)$ effectue un saut dans l’ensemble $\{(\pm1,0),(0,\pm1)\}$ avec probabilité uniforme. Nous montrons que cette marche est transiente, répondant ainsi à une question de Benjamini, Kozma et Schapira. Un ingrédient important de la preuve est un résultat de dispersion pour les martingales.

Citation

Download Citation

Yuval Peres. Bruno Schapira. Perla Sousi. "Martingale defocusing and transience of a self-interacting random walk." Ann. Inst. H. Poincaré Probab. Statist. 52 (3) 1009 - 1022, August 2016. https://doi.org/10.1214/14-AIHP667

Information

Received: 29 April 2014; Revised: 10 December 2014; Accepted: 19 December 2014; Published: August 2016
First available in Project Euclid: 28 July 2016

zbMATH: 1350.60105
MathSciNet: MR3531697
Digital Object Identifier: 10.1214/14-AIHP667

Subjects:
Primary: 60K35

Rights: Copyright © 2016 Institut Henri Poincaré

JOURNAL ARTICLE
14 PAGES


SHARE
Vol.52 • No. 3 • August 2016
Back to Top