Open Access
August 2012 Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla\phi$ systems with non-convex potential
Codina Cotar, Jean-Dominique Deuschel
Ann. Inst. H. Poincaré Probab. Statist. 48(3): 819-853 (August 2012). DOI: 10.1214/11-AIHP437

Abstract

We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for $\nabla\phi$-Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.

Nous considérons un modèle d’interfaces de type gradient indexé par le réseau avec une interaction donnée par la pertubation non convexe d’un potentiel convexe. En utilisant une technique qui découple les sites pairs et impairs, nous démontrons pour une classe de potentiels non convexes l’unicité de la composante ergodique, de la mesure de Gibbs du gradient, la décroissance des covariances, la loi limite centrale et la stricte convexité de la tension superficielle.

Citation

Download Citation

Codina Cotar. Jean-Dominique Deuschel. "Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla\phi$ systems with non-convex potential." Ann. Inst. H. Poincaré Probab. Statist. 48 (3) 819 - 853, August 2012. https://doi.org/10.1214/11-AIHP437

Information

Published: August 2012
First available in Project Euclid: 26 June 2012

zbMATH: 1247.60133
MathSciNet: MR2976565
Digital Object Identifier: 10.1214/11-AIHP437

Subjects:
Primary: 35J15 , 60K35 , 82B24

Keywords: Decay of covariances , Effective non-convex gradient interface models , Scaling limit , Surface tension , Uniqueness of ergodic component

Rights: Copyright © 2012 Institut Henri Poincaré

Vol.48 • No. 3 • August 2012
Back to Top