Open Access
Translator Disclaimer
2014 Global regularity for a slightly supercritical hyperdissipative Navier–Stokes system
David Barbato, Francesco Morandin, Marco Romito
Anal. PDE 7(8): 2009-2027 (2014). DOI: 10.2140/apde.2014.7.2009

Abstract

We prove global existence of smooth solutions for a slightly supercritical hyperdissipative Navier–Stokes under the optimal condition on the correction to the dissipation. This proves a conjecture formulated by Tao.

Citation

Download Citation

David Barbato. Francesco Morandin. Marco Romito. "Global regularity for a slightly supercritical hyperdissipative Navier–Stokes system." Anal. PDE 7 (8) 2009 - 2027, 2014. https://doi.org/10.2140/apde.2014.7.2009

Information

Received: 24 July 2014; Accepted: 14 December 2014; Published: 2014
First available in Project Euclid: 20 December 2017

zbMATH: 1309.76053
MathSciNet: MR3318746
Digital Object Identifier: 10.2140/apde.2014.7.2009

Subjects:
Primary: 76D03 , 76D05
Secondary: 35Q30 , 35Q35

Keywords: dyadic model , global existence , Navier–Stokes , slightly supercritical Navier–Stokes equations.

Rights: Copyright © 2014 Mathematical Sciences Publishers

JOURNAL ARTICLE
19 PAGES


SHARE
Vol.7 • No. 8 • 2014
MSP
Back to Top